These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 27372754)
1. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases. Suenkel B; Steegborn C Methods Enzymol; 2016; 573():183-208. PubMed ID: 27372754 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Pannek M; Simic Z; Fuszard M; Meleshin M; Rotili D; Mai A; Schutkowski M; Steegborn C Nat Commun; 2017 Nov; 8(1):1513. PubMed ID: 29138502 [TBL] [Abstract][Full Text] [Related]
3. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872 [TBL] [Abstract][Full Text] [Related]
4. The ɛ-Amino Group of Protein Lysine Residues Is Highly Susceptible to Nonenzymatic Acylation by Several Physiological Acyl-CoA Thioesters. Simic Z; Weiwad M; Schierhorn A; Steegborn C; Schutkowski M Chembiochem; 2015 Nov; 16(16):2337-47. PubMed ID: 26382620 [TBL] [Abstract][Full Text] [Related]
5. Preparation of enzymatically active recombinant class III protein deacetylases. North BJ; Schwer B; Ahuja N; Marshall B; Verdin E Methods; 2005 Aug; 36(4):338-45. PubMed ID: 16091304 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation. Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714 [TBL] [Abstract][Full Text] [Related]
7. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. Fischer F; Gertz M; Suenkel B; Lakshminarasimhan M; Schutkowski M; Steegborn C PLoS One; 2012; 7(9):e45098. PubMed ID: 23028781 [TBL] [Abstract][Full Text] [Related]
8. Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes. Rowland EA; Greco TM; Snowden CK; McCabe AL; Silhavy TJ; Cristea IM mBio; 2017 Sep; 8(5):. PubMed ID: 28900027 [TBL] [Abstract][Full Text] [Related]
9. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes. Tanabe K; Liu J; Kato D; Kurumizaka H; Yamatsugu K; Kanai M; Kawashima SA Sci Rep; 2018 Feb; 8(1):2656. PubMed ID: 29422688 [TBL] [Abstract][Full Text] [Related]
10. Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. Zhao K; Chai X; Marmorstein R J Mol Biol; 2004 Mar; 337(3):731-41. PubMed ID: 15019790 [TBL] [Abstract][Full Text] [Related]
11. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia. Gertz M; Steegborn C Biochim Biophys Acta; 2010 Aug; 1804(8):1658-65. PubMed ID: 19766741 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of activation for the sirtuin 6 protein deacylase. Klein MA; Liu C; Kuznetsov VI; Feltenberger JB; Tang W; Denu JM J Biol Chem; 2020 Jan; 295(5):1385-1399. PubMed ID: 31822559 [TBL] [Abstract][Full Text] [Related]
13. Plasmodium falciparum Sir2: an unusual sirtuin with dual histone deacetylase and ADP-ribosyltransferase activity. Merrick CJ; Duraisingh MT Eukaryot Cell; 2007 Nov; 6(11):2081-91. PubMed ID: 17827348 [TBL] [Abstract][Full Text] [Related]
14. New assays and approaches for discovery and design of Sirtuin modulators. Schutkowski M; Fischer F; Roessler C; Steegborn C Expert Opin Drug Discov; 2014 Feb; 9(2):183-99. PubMed ID: 24382304 [TBL] [Abstract][Full Text] [Related]
15. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. Feldman JL; Baeza J; Denu JM J Biol Chem; 2013 Oct; 288(43):31350-6. PubMed ID: 24052263 [TBL] [Abstract][Full Text] [Related]
16. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Wang M; Lin H Annu Rev Biochem; 2021 Jun; 90():245-285. PubMed ID: 33848425 [TBL] [Abstract][Full Text] [Related]
17. Biology, Chemistry, and Pharmacology of Sirtuins. Bedalov A; Chowdhury S; Simon JA Methods Enzymol; 2016; 574():183-211. PubMed ID: 27423863 [TBL] [Abstract][Full Text] [Related]
18. Current Trends in Sirtuin Activator and Inhibitor Development. Bursch KL; Goetz CJ; Smith BC Molecules; 2024 Mar; 29(5):. PubMed ID: 38474697 [TBL] [Abstract][Full Text] [Related]
19. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Wagner GR; Hirschey MD Mol Cell; 2014 Apr; 54(1):5-16. PubMed ID: 24725594 [TBL] [Abstract][Full Text] [Related]
20. Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Ringel AE; Roman C; Wolberger C Protein Sci; 2014 Dec; 23(12):1686-97. PubMed ID: 25200501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]