These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27372868)

  • 1. Chemogenetic approach to model hypofrontality.
    Peña ID; Shi WX
    Med Hypotheses; 2016 Aug; 93():113-6. PubMed ID: 27372868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.
    Yang CR; Seamans JK; Gorelova N
    Neuropsychopharmacology; 1999 Aug; 21(2):161-94. PubMed ID: 10432466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways.
    Arnsten AF
    J Clin Psychiatry; 2006; 67 Suppl 8():7-12. PubMed ID: 16961424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the hippocampo-prefrontal cortex system in phencyclidine-induced psychosis: a model for schizophrenia.
    Jodo E
    J Physiol Paris; 2013 Dec; 107(6):434-40. PubMed ID: 23792022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness.
    Scornaiencki R; Cantrup R; Rushlow WJ; Rajakumar N
    Int J Neuropsychopharmacol; 2009 Oct; 12(9):1195-208. PubMed ID: 19275776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemogenetic Modulation of G Protein-Coupled Receptor Signalling in Visual Attention Research.
    Jørgensen SH; Fitzpatrick CM; Gether U; Woldbye DPD; Sørensen AT
    Basic Clin Pharmacol Toxicol; 2017 Nov; 121(5):373-381. PubMed ID: 28609587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel pharmacological approaches to the treatment of schizophrenia.
    Fink-Jensen A
    Dan Med Bull; 2000 Jun; 47(3):151-67. PubMed ID: 10913983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR).
    Li Q; Wong JH; Lu G; Antonio GE; Yeung DK; Ng TB; Forster LE; Yew DT
    Biochim Biophys Acta; 2009 Aug; 1792(8):766-76. PubMed ID: 19482079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: the critical role of early developmental events on prefrontal function.
    Sullivan RM; Brake WG
    Behav Brain Res; 2003 Nov; 146(1-2):43-55. PubMed ID: 14643458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ketamine increases striatal dopamine release and hyperlocomotion in adult rats after postnatal functional blockade of the prefrontal cortex.
    Usun Y; Eybrard S; Meyer F; Louilot A
    Behav Brain Res; 2013 Nov; 256():229-37. PubMed ID: 23958806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-pubertal disruption of medial prefrontal cortical dopamine-glutamate interactions in a developmental animal model of schizophrenia.
    Tseng KY; Lewis BL; Lipska BK; O'Donnell P
    Biol Psychiatry; 2007 Oct; 62(7):730-8. PubMed ID: 17207473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prepuberal intranasal dopamine treatment in an animal model of ADHD ameliorates deficient spatial attention, working memory, amino acid transmitters and synaptic markers in prefrontal cortex, ventral and dorsal striatum.
    Ruocco LA; Treno C; Gironi Carnevale UA; Arra C; Mattern C; Huston JP; de Souza Silva MA; Nikolaus S; Scorziello A; Nieddu M; Boatto G; Illiano P; Pagano C; Tino A; Sadile AG
    Amino Acids; 2014 Sep; 46(9):2105-22. PubMed ID: 24862315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemogenetic inhibition of prefrontal projection neurons constrains top-down control of attention in young but not aged rats.
    Duggan MR; Joshi S; Strupp J; Parikh V
    Brain Struct Funct; 2021 Sep; 226(7):2357-2373. PubMed ID: 34247267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal mechanisms underlying attention deficit hyperactivity disorder: the influence of arousal on prefrontal cortical function.
    Brennan AR; Arnsten AF
    Ann N Y Acad Sci; 2008; 1129():236-45. PubMed ID: 18591484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prefrontal cortical dopamine from an evolutionary perspective.
    Lee YA; Goto Y
    Neurosci Bull; 2015 Apr; 31(2):164-74. PubMed ID: 25617024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of non-competitive NMDA receptor antagonist MK-801 on neuronal activity in rodent prefrontal cortex: an animal model for cognitive symptoms of schizophrenia.
    Blot K; Bai J; Otani S
    J Physiol Paris; 2013 Dec; 107(6):448-51. PubMed ID: 23603055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholamine dysfunction in attention-deficit/hyperactivity disorder: an update.
    Prince J
    J Clin Psychopharmacol; 2008 Jun; 28(3 Suppl 2):S39-45. PubMed ID: 18480676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PET neuroimaging of extrastriatal dopamine receptors and prefrontal cortex functions.
    Takahashi H
    J Physiol Paris; 2013 Dec; 107(6):503-9. PubMed ID: 23851135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder.
    Viggiano D; Ruocco LA; Arcieri S; Sadile AG
    Neural Plast; 2004; 11(1-2):133-49. PubMed ID: 15303310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.