These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27373225)

  • 1. Ice nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring.
    Bäumer A; Duman JG; Havenith M
    Phys Chem Chem Phys; 2016 Jul; 18(28):19318-23. PubMed ID: 27373225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure of a hyperactive antifreeze protein adsorbed to ice.
    Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ
    J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting Behavior of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation Promoters.
    Eickhoff L; Dreischmeier K; Zipori A; Sirotinskaya V; Adar C; Reicher N; Braslavsky I; Rudich Y; Koop T
    J Phys Chem Lett; 2019 Mar; 10(5):966-972. PubMed ID: 30742446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups.
    Krishnamoorthy AN; Holm C; Smiatek J
    J Phys Chem B; 2014 Oct; 118(40):11613-21. PubMed ID: 25207443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of sulfates on antifreeze protein activity.
    Meister K; Duman JG; Xu Y; DeVries AL; Leitner DM; Havenith M
    J Phys Chem B; 2014 Jul; 118(28):7920-4. PubMed ID: 24821472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifreeze glycoprotein activity correlates with long-range protein-water dynamics.
    Ebbinghaus S; Meister K; Born B; DeVries AL; Gruebele M; Havenith M
    J Am Chem Soc; 2010 Sep; 132(35):12210-1. PubMed ID: 20712311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs.
    Hudait A; Odendahl N; Qiu Y; Paesani F; Molinero V
    J Am Chem Soc; 2018 Apr; 140(14):4905-4912. PubMed ID: 29564892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins.
    Aich R; Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2023 Jul; 127(27):6038-6048. PubMed ID: 37395194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice.
    Hudait A; Qiu Y; Odendahl N; Molinero V
    J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.
    Chakraborty S; Jana B
    J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Pseudomonas syringae ice-nucleation protein as a beta-helical protein.
    Graether SP; Jia Z
    Biophys J; 2001 Mar; 80(3):1169-73. PubMed ID: 11222281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the Hydration Water of Antifreeze Glycoproteins.
    Groot CC; Meister K; DeVries AL; Bakker HJ
    J Phys Chem Lett; 2016 Dec; 7(23):4836-4840. PubMed ID: 27934047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin.
    Duboué-Dijon E; Laage D
    J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis.
    Urbańczyk M; Góra J; Latajka R; Sewald N
    Amino Acids; 2017 Feb; 49(2):209-222. PubMed ID: 27913993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice Nucleation Properties of Ice-binding Proteins from Snow Fleas.
    Bissoyi A; Reicher N; Chasnitsky M; Arad S; Koop T; Rudich Y; Braslavsky I
    Biomolecules; 2019 Sep; 9(10):. PubMed ID: 31557956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein.
    Mallajosyula SS; Vanommeslaeghe K; MacKerell AD
    J Phys Chem B; 2014 Oct; 118(40):11696-706. PubMed ID: 25137353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures, dynamics, and hydrogen-bond interactions of antifreeze proteins in TIP4P/Ice water and their dependence on force fields.
    Lee H
    PLoS One; 2018; 13(6):e0198887. PubMed ID: 29879205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the role of key structural motifs in antifreeze glycoproteins.
    Pandey P; Mallajosyula SS
    Phys Chem Chem Phys; 2019 Feb; 21(7):3903-3917. PubMed ID: 30702099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.