BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 27373335)

  • 1. eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition.
    Simonetti A; Brito Querido J; Myasnikov AG; Mancera-Martinez E; Renaud A; Kuhn L; Hashem Y
    Mol Cell; 2016 Jul; 63(2):206-217. PubMed ID: 27373335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast.
    Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH
    Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of mammalian eIF3 in the context of the 43S preinitiation complex.
    des Georges A; Dhote V; Kuhn L; Hellen CU; Pestova TV; Frank J; Hashem Y
    Nature; 2015 Sep; 525(7570):491-5. PubMed ID: 26344199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit.
    Hashem Y; des Georges A; Dhote V; Langlois R; Liao HY; Grassucci RA; Pestova TV; Hellen CU; Frank J
    Nature; 2013 Nov; 503(7477):539-43. PubMed ID: 24185006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. eIF3j is located in the decoding center of the human 40S ribosomal subunit.
    Fraser CS; Berry KE; Hershey JW; Doudna JA
    Mol Cell; 2007 Jun; 26(6):811-9. PubMed ID: 17588516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scanning mechanism of eukaryotic translation initiation.
    Hinnebusch AG
    Annu Rev Biochem; 2014; 83():779-812. PubMed ID: 24499181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection.
    Llácer JL; Hussain T; Dong J; Villamayor L; Gordiyenko Y; Hinnebusch AG
    Nucleic Acids Res; 2021 Nov; 49(20):11491-11511. PubMed ID: 34648019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control.
    Nielsen KH; Szamecz B; Valásek L; Jivotovskaya A; Shin BS; Hinnebusch AG
    EMBO J; 2004 Mar; 23(5):1166-77. PubMed ID: 14976554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.
    Ji H; Fraser CS; Yu Y; Leary J; Doudna JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):16990-5. PubMed ID: 15563596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo.
    Asano K; Clayton J; Shalev A; Hinnebusch AG
    Genes Dev; 2000 Oct; 14(19):2534-46. PubMed ID: 11018020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfiguration of yeast 40S ribosomal subunit domains by the translation initiation multifactor complex.
    Gilbert RJ; Gordiyenko Y; von der Haar T; Sonnen AF; Hofmann G; Nardelli M; Stuart DI; McCarthy JE
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5788-93. PubMed ID: 17389391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNA(i)Met.
    Phan L; Schoenfeld LW; Valásek L; Nielsen KH; Hinnebusch AG
    EMBO J; 2001 Jun; 20(11):2954-65. PubMed ID: 11387228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing.
    Lomakin IB; Kolupaeva VG; Marintchev A; Wagner G; Pestova TV
    Genes Dev; 2003 Nov; 17(22):2786-97. PubMed ID: 14600024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation.
    Asano K; Shalev A; Phan L; Nielsen K; Clayton J; Valásek L; Donahue TF; Hinnebusch AG
    EMBO J; 2001 May; 20(9):2326-37. PubMed ID: 11331597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly.
    Herrmannová A; Daujotyte D; Yang JC; Cuchalová L; Gorrec F; Wagner S; Dányi I; Lukavsky PJ; Valásek LS
    Nucleic Acids Res; 2012 Mar; 40(5):2294-311. PubMed ID: 22090426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a human cap-dependent 48S translation pre-initiation complex.
    Eliseev B; Yeramala L; Leitner A; Karuppasamy M; Raimondeau E; Huard K; Alkalaeva E; Aebersold R; Schaffitzel C
    Nucleic Acids Res; 2018 Mar; 46(5):2678-2689. PubMed ID: 29401259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation.
    Sun C; Querol-Audí J; Mortimer SA; Arias-Palomo E; Doudna JA; Nogales E; Cate JH
    Nucleic Acids Res; 2013 Aug; 41(15):7512-21. PubMed ID: 23766293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Functional Insights into Human Re-initiation Complexes.
    Weisser M; Schäfer T; Leibundgut M; Böhringer D; Aylett CHS; Ban N
    Mol Cell; 2017 Aug; 67(3):447-456.e7. PubMed ID: 28732596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo.
    Olsen DS; Savner EM; Mathew A; Zhang F; Krishnamoorthy T; Phan L; Hinnebusch AG
    EMBO J; 2003 Jan; 22(2):193-204. PubMed ID: 12514125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II.
    Pestova TV; de Breyne S; Pisarev AV; Abaeva IS; Hellen CU
    EMBO J; 2008 Apr; 27(7):1060-72. PubMed ID: 18337746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.