These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27373712)

  • 21. Exceptional Optical Absorption of Buckled Arsenene Covering a Broad Spectral Range by Molecular Doping.
    Sun M; Chou JP; Gao J; Cheng Y; Hu A; Tang W; Zhang G
    ACS Omega; 2018 Aug; 3(8):8514-8520. PubMed ID: 31458980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamically Stable Topological Phase of Arsenene.
    Rahman G; Mahmood A; García-Suárez VM
    Sci Rep; 2019 May; 9(1):7966. PubMed ID: 31138871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magneto-electronics, transport properties, and tuning effects of arsenene armchair nanotubes doped with transition metal atoms.
    Han JN; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2020 Jul; 31(31):315206. PubMed ID: 32299069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First-principles calculations to investigate electronic structures and magnetic regulation of non-metallic elements doped BP with point defects.
    Wen J; Li N; Shi Q; Wu H; Feng X; Wang C; Zhang J
    J Mol Graph Model; 2023 Jan; 118():108370. PubMed ID: 36370688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Stone-Wales defects and transition-metal dopants on arsenene: a DFT study.
    Li J; Zhou Q; Ju W; Zhang Q; Liu Y
    RSC Adv; 2019 Jun; 9(33):19048-19056. PubMed ID: 35516850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strain-induced spin-gapless semiconductors and pure thermal spin-current in magnetic black arsenic-phosphorus monolayers.
    Ji Y; Tan X; Yue X; Sun Y; Wang Y; Liang H; Li Q; Sun X; Wu D
    Phys Chem Chem Phys; 2022 Jun; 24(22):13897-13904. PubMed ID: 35621115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional tricycle arsenene with a direct band gap.
    Ma S; Zhou P; Sun LZ; Zhang KW
    Phys Chem Chem Phys; 2016 Mar; 18(12):8723-9. PubMed ID: 26954607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic Nature Transition and Magnetism Creation in Vacancy-Defected Ti
    Sakhraoui T; Karlický F
    ACS Omega; 2022 Nov; 7(46):42221-42232. PubMed ID: 36440157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady semiconducting properties of monolayer PtSe
    Zhao X; Huang R; Wang T; Dai X; Wei S; Ma Y
    Phys Chem Chem Phys; 2020 Mar; 22(10):5765-5773. PubMed ID: 32104810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study.
    Ding Y; Wang Y
    Phys Chem Chem Phys; 2016 Aug; 18(33):23080-8. PubMed ID: 27491896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functionalization of electronic, spin and optical properties of GeSe monolayer by substitutional doping: a first-principles study.
    Chakraborty R; Ahmed S; Subrina S
    Nanotechnology; 2021 May; 32(30):. PubMed ID: 33845470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.
    Wang W; Bai L; Yang C; Fan K; Xie Y; Li M
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-Principles Study of Induced Magnetism in Tungsten Vanadium Selenide Alloys for Spintronic Applications.
    Hoque KS; Zubair A
    ACS Omega; 2022 Oct; 7(41):36184-36194. PubMed ID: 36278085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulating the electronic structure and physical properties in monolayer Mo
    Ren W; Jin K; Ma C; Ge C; Guo E; Wang C; Xu X; Yang G
    Nanoscale; 2022 Jun; 14(25):8934-8943. PubMed ID: 35642506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical and magnetic properties of antiferromagnetic semiconductor MnSi
    Chen D; Jiang Z; Tang Y; Zhou J; Gu Y; He JJ; Yuan J
    Front Chem; 2022; 10():1103704. PubMed ID: 36569959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic and magnetic properties of SnSe monolayers doped by Ga, In, As, and Sb: a first-principles study.
    Wang Q; Yu W; Fu X; Qiao C; Xia C; Jia Y
    Phys Chem Chem Phys; 2016 Mar; 18(11):8158-64. PubMed ID: 26923938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiconfiguration b-AsP-based doping systems with enriched elements (C and O): novel materials for spintronic devices.
    Liu F; Xu J; Wang T; Yu Q; Wang W; Zhang Y; Wu J; Zhu S
    J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Searching for d
    Nguyen DK; Bao TV; Kha NA; Ponce-Pérez R; Guerrero-Sanchez J; Hoat DM
    RSC Adv; 2023 Feb; 13(9):5885-5892. PubMed ID: 36816073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene.
    Galicia Hernandez JM; Fernandez-Escamilla HN; Guerrero Sanchez J; Takeuchi N
    Sci Rep; 2022 Dec; 12(1):20979. PubMed ID: 36470955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.