These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27373850)

  • 21. Pharmacological activity of C10-substituted analogs of the high-affinity kainate receptor agonist dysiherbaine.
    Lash-Van Wyhe LL; Postila PA; Tsubone K; Sasaki M; Pentikäinen OT; Sakai R; Swanson GT
    Neuropharmacology; 2010 Mar; 58(3):640-9. PubMed ID: 19962997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors.
    Fisher MT; Fisher JL
    Neuroscience; 2014 Oct; 278():70-80. PubMed ID: 25139762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate.
    Venskutonytė R; Frydenvang K; Gajhede M; Bunch L; Pickering DS; Kastrup JS
    J Struct Biol; 2011 Dec; 176(3):307-14. PubMed ID: 21907808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors.
    Zhou LM; Gu ZQ; Costa AM; Yamada KA; Mansson PE; Giordano T; Skolnick P; Jones KA
    J Pharmacol Exp Ther; 1997 Jan; 280(1):422-7. PubMed ID: 8996224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of willardiine and 6-azawillardiine analogs: pharmacological characterization on cloned homomeric human AMPA and kainate receptor subtypes.
    Jane DE; Hoo K; Kamboj R; Deverill M; Bleakman D; Mandelzys A
    J Med Chem; 1997 Oct; 40(22):3645-50. PubMed ID: 9357531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. (S)-2-Amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]isoxazol-4-yl)propionic acid, a potent and selective agonist at the GluR5 subtype of ionotropic glutamate receptors. Synthesis, modeling, and molecular pharmacology.
    Brehm L; Greenwood JR; Hansen KB; Nielsen B; Egebjerg J; Stensbøl TB; Bräuner-Osborne H; Sløk FA; Kronborg TT; Krogsgaard-Larsen P
    J Med Chem; 2003 Apr; 46(8):1350-8. PubMed ID: 12672235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacological properties of homomeric and heteromeric GluR1o and GluR3o receptors.
    Nielsen BS; Banke TG; Schousboe A; Pickering DS
    Eur J Pharmacol; 1998 Nov; 360(2-3):227-38. PubMed ID: 9851590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subunit-specific desensitization of heteromeric kainate receptors.
    Mott DD; Rojas A; Fisher JL; Dingledine RJ; Benveniste M
    J Physiol; 2010 Feb; 588(Pt 4):683-700. PubMed ID: 20026616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ( S)-2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)propanoic Acid (AMPA) and Kainate Receptor Ligands: Further Exploration of Bioisosteric Replacements and Structural and Biological Investigation.
    Brogi S; Brindisi M; Butini S; Kshirsagar GU; Maramai S; Chemi G; Gemma S; Campiani G; Novellino E; Fiorenzani P; Pinassi J; Aloisi AM; Gynther M; Venskutonytė R; Han L; Frydenvang K; Kastrup JS; Pickering DS
    J Med Chem; 2018 Mar; 61(5):2124-2130. PubMed ID: 29451794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors.
    Juknaitė L; Venskutonytė R; Assaf Z; Faure S; Gefflaut T; Aitken DJ; Nielsen B; Gajhede M; Kastrup JS; Bunch L; Frydenvang K; Pickering DS
    J Struct Biol; 2012 Oct; 180(1):39-46. PubMed ID: 22789682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regional distribution of low affinity kainate receptors in brain of Macaca fascicularis determined by autoradiography using [3H](2S,4R)-4-methylglutamate.
    Carroll FY; Finkelstein DI; Horne MK; Lawrence AJ; Crawford D; Paxinos G; Beart PM
    Neurosci Lett; 1998 Oct; 255(2):71-4. PubMed ID: 9835217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The kainate receptor antagonist UBP310 but not single deletion of GluK1, GluK2, or GluK3 subunits, inhibits MPTP-induced degeneration in the mouse midbrain.
    Stayte S; Laloli KJ; Rentsch P; Lowth A; Li KM; Pickford R; Vissel B
    Exp Neurol; 2020 Jan; 323():113062. PubMed ID: 31513786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Behavioral analysis of kainate receptor KO mice and the role of GluK3 subunit in anxiety.
    Iida I; Konno K; Natsume R; Abe M; Watanabe M; Sakimura K; Terunuma M
    Sci Rep; 2024 Feb; 14(1):4521. PubMed ID: 38402313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A pharmacological investigation of the role of GLUK5-containing receptors in kainate-driven hippocampal gamma band oscillations.
    Brown JT; Teriakidis A; Randall AD
    Neuropharmacology; 2006 Jan; 50(1):47-56. PubMed ID: 16153668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure, Function, and Regulation of the Kainate Receptor.
    Dhingra S; Yadav J; Kumar J
    Subcell Biochem; 2022; 99():317-350. PubMed ID: 36151381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity.
    Mayer ML
    Neuron; 2005 Feb; 45(4):539-52. PubMed ID: 15721240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective kainate receptor (GluK1) ligands structurally based upon 1H-cyclopentapyrimidin-2,4(1H,3H)-dione: synthesis, molecular modeling, and pharmacological and biostructural characterization.
    Venskutonyte R; Butini S; Coccone SS; Gemma S; Brindisi M; Kumar V; Guarino E; Maramai S; Valenti S; Amir A; Valadés EA; Frydenvang K; Kastrup JS; Novellino E; Campiani G; Pickering DS
    J Med Chem; 2011 Jul; 54(13):4793-805. PubMed ID: 21619066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kainate induces various domain closures in AMPA and kainate receptors.
    Venskutonytė R; Frydenvang K; Hald H; Rabassa AC; Gajhede M; Ahring PK; Kastrup JS
    Neurochem Int; 2012 Sep; 61(4):536-45. PubMed ID: 22425692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoradiographic characterization of the non-N-methyl-D-aspartate binding sites in human cerebellum using the antagonist [3H]6-cyano-7-nitroquinoxaline-2,3-dione.
    Hatziefthimiou A; Mitsacos A; Kouvelas ED
    J Neurosci Res; 1994 Feb; 37(3):392-7. PubMed ID: 7909852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-Activity Relationship and Solubility Studies of N1-Substituted Quinoxaline-2,3-diones as Kainate Receptor Antagonists.
    Chałupnik P; Vialko A; Pickering DS; Nielsen B; Bay Y; Skov Kristensen A; Hinkkanen M; Szczepańska K; Karcz T; Latacz G; Johansen TN; Szymańska E
    ChemMedChem; 2023 Sep; 18(18):e202300278. PubMed ID: 37387321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.