BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27373916)

  • 1. Crystallization and Properties of NADPH-Dependent L-Sorbose Reductase from Gluconobacter melanogenus IFO 3294.
    Adachi O; Ano Y; Moonmangmee D; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 1999; 63(12):2137-43. PubMed ID: 27373916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization and Properties of NAD-Dependent D-Sorbitol Dehydrogenase from Gluconobacter suboxydans IFO 3257.
    Adachi O; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 1999; 63(9):1589-95. PubMed ID: 27389646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystalline NADP-Dependent D-Mannitol Dehydrogenase from Gluconobacter suboxydans.
    Adachi O; Toyama H; Matsushita K
    Biosci Biotechnol Biochem; 1999; 63(2):402-7. PubMed ID: 27393065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291.
    Shinjoh M; Tazoe M; Hoshino T
    J Bacteriol; 2002 Feb; 184(3):861-3. PubMed ID: 11790761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming NADPH product inhibition improves D-sorbitol conversion to L-sorbose.
    Kim TS; Gao H; Li J; Kalia VC; Muthusamy K; Sohng JK; Kim IW; Lee JK
    Sci Rep; 2019 Jan; 9(1):815. PubMed ID: 30692560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255.
    Sugisawa T; Hoshino T
    Biosci Biotechnol Biochem; 2002 Jan; 66(1):57-64. PubMed ID: 11866120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New quinoproteins in oxidative fermentation.
    Adachi O; Moonmangmee D; Shinagawa E; Toyama H; Yamada M; Matsushita K
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):10-7. PubMed ID: 12686101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures.
    Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-sorbose reductase and its transcriptional regulator involved in L-sorbose utilization of Gluconobacter frateurii.
    Soemphol W; Toyama H; Moonmangmee D; Adachi O; Matsushita K
    J Bacteriol; 2007 Jul; 189(13):4800-8. PubMed ID: 17468249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of l-sorbose reductase from Gluconobacter frateurii complexed with NADPH and l-sorbose.
    Kubota K; Nagata K; Okai M; Miyazono K; Soemphol W; Ohtsuka J; Yamamura A; Saichana N; Toyama H; Matsushita K; Tanokura M
    J Mol Biol; 2011 Apr; 407(4):543-55. PubMed ID: 21277857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization.
    Greenberg JR; Price NP; Oliver RP; Sherman F; Rustchenko E
    Yeast; 2005 Sep; 22(12):957-69. PubMed ID: 16134116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New mechanisms for the biosynthesis and metabolism of 2-keto-L-gulonic acid in bacteria.
    Makover S; Ramsey GB; Vane FM; Witt CG; Wright RB
    Biotechnol Bioeng; 1975 Oct; 17(10):1485-1514. PubMed ID: 1182275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization.
    Hoshino T; Sugisawa T; Shinjoh M; Tomiyama N; Miyazaki T
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):278-88. PubMed ID: 12686146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization.
    Kim TS; Patel SK; Selvaraj C; Jung WS; Pan CH; Kang YC; Lee JK
    Sci Rep; 2016 Sep; 6():33438. PubMed ID: 27633501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, crystallization and preliminary X-ray analysis of L-sorbose reductase from Gluconobacter frateurii complexed with L-sorbose or NADPH.
    Kubota K; Nagata K; Miyazono K; Toyama H; Matsushita K; Tanokura M
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jun; 65(Pt 6):562-4. PubMed ID: 19478431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses.
    Adachi O; Fujii Y; Ghaly MF; Toyama H; Shinagawa E; Matsushita K
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2755-62. PubMed ID: 11826974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of L-sorbose to L-sorbosone by immobilized cells of Gluconobacter melanogenus IFO 3293.
    Martin CK; Perlman D
    Biotechnol Bioeng; 1976 Feb; 18(2):217-37. PubMed ID: 1252610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation by organic solvents and detergents of conversion of L-sorbose to L-sorbosone by Gluconobacter melanogenus IFO 3293.
    Martin CK; Perlman D
    Biotechnol Bioeng; 1975 Oct; 17(10):1473-83. PubMed ID: 171012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.