BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 27373973)

  • 21. Vitreoretinal influences on lens function and cataract.
    Beebe DC; Holekamp NM; Siegfried C; Shui YB
    Philos Trans R Soc Lond B Biol Sci; 2011 Apr; 366(1568):1293-300. PubMed ID: 21402587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional characterisation of glutathione export from the rat lens.
    Umapathy A; Li B; Donaldson PJ; Lim JC
    Exp Eye Res; 2018 Jan; 166():151-159. PubMed ID: 29032155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Studies on the total glutathione of aqueous humor in cataract. II. Changes in the levels of total glutathione in aqueous humor and crystalline lens of experimental traumatic cataract].
    Fujiwara T
    Nippon Ganka Gakkai Zasshi; 1970 Feb; 74(2):113-20. PubMed ID: 5462603
    [No Abstract]   [Full Text] [Related]  

  • 25. Metabolism and function of glutathione in the lens.
    Reddy VN; Giblin FJ
    Ciba Found Symp; 1984; 106():65-87. PubMed ID: 6568981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced glutathione levels in senile cataractous lens epithelial cells.
    Sueno T; Bando M; Obazawa H
    Tokai J Exp Clin Med; 1992 May; 17(1):5-9. PubMed ID: 1523693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression and characterization of SPARC in human lens and in the aqueous and vitreous humors.
    Yan Q; Clark JI; Sage EH
    Exp Eye Res; 2000 Jul; 71(1):81-90. PubMed ID: 10880278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous measurement of reduced and oxidized glutathione in human aqueous humor and cataracts by electrochemical detection.
    Chakrapani B; Yedavally S; Leverenz V; Giblin FJ; Reddy VN
    Ophthalmic Res; 1995; 27 Suppl 1():69-77. PubMed ID: 8577465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative responses induced by pharmacologic vitreolysis and/or long-term hyperoxia treatment in rat lenses.
    Li Q; Yan H; Ding TB; Han J; Shui YB; Beebe DC
    Curr Eye Res; 2013 Jun; 38(6):639-48. PubMed ID: 23534693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel roles for the lens in preserving overall ocular health.
    Lim JC; Umapathy A; Grey AC; Vaghefi E; Donaldson PJ
    Exp Eye Res; 2017 Mar; 156():117-123. PubMed ID: 27282996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of vitamin E on glutathione content in red blood cells, aqueous humor and lens of humans and other species.
    Costagliola C; Iuliano G; Menzione M; Rinaldi E; Vito P; Auricchio G
    Exp Eye Res; 1986 Dec; 43(6):905-14. PubMed ID: 3817031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing.
    Babizhayev MA
    Biochim Biophys Acta; 1996 Mar; 1315(2):87-99. PubMed ID: 8608175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of circulating reduced glutathione at the basolateral side of the anterior lens epithelium: physiologic importance and manipulations.
    Mackic JB; Jinagouda S; McComb JG; Weiss MH; Kannan R; Kaplowitz N; Zlokovic BV
    Exp Eye Res; 1996 Jan; 62(1):29-37. PubMed ID: 8674510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The LEGSKO mouse: a mouse model of age-related nuclear cataract based on genetic suppression of lens glutathione synthesis.
    Fan X; Liu X; Hao S; Wang B; Robinson ML; Monnier VM
    PLoS One; 2012; 7(11):e50832. PubMed ID: 23226398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppressive effects of thyroxine on glucocorticoid (gc)-induced metabolic changes and cataract formation on developing chick embryos.
    Kosano H; Watanabe H; Nishigori H
    Exp Eye Res; 2001 Jun; 72(6):643-8. PubMed ID: 11384152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The possible mechanism of naphthalene cataract in rat and its prevention by an aldose reductase inhibitor (ALO1576).
    Xu GT; Zigler JS; Lou MF
    Exp Eye Res; 1992 Jan; 54(1):63-72. PubMed ID: 1541342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium.
    Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular identification and characterisation of the glycine transporter (GLYT1) and the glutamine/glutamate transporter (ASCT2) in the rat lens.
    Lim J; Lorentzen KA; Kistler J; Donaldson PJ
    Exp Eye Res; 2006 Aug; 83(2):447-55. PubMed ID: 16635486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of magnesium taurate on the onset and progression of galactose-induced experimental cataract: in vivo and in vitro evaluation.
    Agarwal R; Iezhitsa I; Awaludin NA; Ahmad Fisol NF; Bakar NS; Agarwal P; Abdul Rahman TH; Spasov A; Ozerov A; Mohamed Ahmed Salama MS; Mohd Ismail N
    Exp Eye Res; 2013 May; 110():35-43. PubMed ID: 23428743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The oxidative stress in the cataract formation].
    Obara Y
    Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.