BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

692 related articles for article (PubMed ID: 27374224)

  • 1. Origin and Role of a Subset of Tumor-Associated Neutrophils with Antigen-Presenting Cell Features in Early-Stage Human Lung Cancer.
    Singhal S; Bhojnagarwala PS; O'Brien S; Moon EK; Garfall AL; Rao AS; Quatromoni JG; Stephen TL; Litzky L; Deshpande C; Feldman MD; Hancock WW; Conejo-Garcia JR; Albelda SM; Eruslanov EB
    Cancer Cell; 2016 Jul; 30(1):120-135. PubMed ID: 27374224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer.
    Eruslanov EB; Bhojnagarwala PS; Quatromoni JG; Stephen TL; Ranganathan A; Deshpande C; Akimova T; Vachani A; Litzky L; Hancock WW; Conejo-Garcia JR; Feldman M; Albelda SM; Singhal S
    J Clin Invest; 2014 Dec; 124(12):5466-80. PubMed ID: 25384214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytokines required for induction of histocompatibility leukocyte antigen-class I-restricted and tumor-specific cytotoxic T lymphocytes by a SART1-derived peptide.
    Matsunaga K; Nakao M; Masuoka K; Inoue Y; Gouhara R; Imaizumi T; Nishizaka S; Itoh K
    Jpn J Cancer Res; 1999 Sep; 90(9):1007-15. PubMed ID: 10551332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interferon alpha in combination with GM-CSF induces the differentiation of leukaemic antigen-presenting cells that have the capacity to stimulate a specific anti-leukaemic cytotoxic T-cell response from patients with chronic myeloid leukaemia.
    Chen X; Regn S; Raffegerst S; Kolb HJ; Roskrow M
    Br J Haematol; 2000 Nov; 111(2):596-607. PubMed ID: 11122108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3.
    Gosselin EJ; Wardwell K; Rigby WF; Guyre PM
    J Immunol; 1993 Aug; 151(3):1482-90. PubMed ID: 8335942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of neonatal tolerance by a plasmid encoding granulocyte-macrophage colony stimulating factor.
    Ishii KJ; Weiss WR; Klinman DM
    Vaccine; 1999 Nov; 18(7-8):703-10. PubMed ID: 10547430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming of human postmitotic neutrophils into macrophages by growth factors.
    Araki H; Katayama N; Yamashita Y; Mano H; Fujieda A; Usui E; Mitani H; Ohishi K; Nishii K; Masuya M; Minami N; Nobori T; Shiku H
    Blood; 2004 Apr; 103(8):2973-80. PubMed ID: 15070673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expansion of neutrophil precursors and progenitors in suspension cultures of CD34+ cells enriched from human bone marrow.
    Smith SL; Bender JG; Maples PB; Unverzagt K; Schilling M; Lum L; Williams S; Van Epps DE
    Exp Hematol; 1993 Jul; 21(7):870-7. PubMed ID: 7686502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decidua-derived granulocyte macrophage colony-stimulating factor induces polymorphonuclear myeloid-derived suppressor cells from circulating CD15+ neutrophils.
    Li C; Chen C; Kang X; Zhang X; Sun S; Guo F; Wang Q; Kou X; Bai W; Zhao A
    Hum Reprod; 2020 Dec; 35(12):2677-2691. PubMed ID: 33067638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil and vaccine.
    Di Pilato M; Esteban M
    Cell Cycle; 2015; 14(11):1615-6. PubMed ID: 25927421
    [No Abstract]   [Full Text] [Related]  

  • 11. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation.
    Bronte V; Chappell DB; Apolloni E; Cabrelle A; Wang M; Hwu P; Restifo NP
    J Immunol; 1999 May; 162(10):5728-37. PubMed ID: 10229805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of cytokine synergy essential for vaccine protection against viral challenge.
    Ahlers JD; Belyakov IM; Matsui S; Berzofsky JA
    Int Immunol; 2001 Jul; 13(7):897-908. PubMed ID: 11431420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotype and function of tumor-associated neutrophils and their subsets in early-stage human lung cancer.
    Eruslanov EB
    Cancer Immunol Immunother; 2017 Aug; 66(8):997-1006. PubMed ID: 28283697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4
    Lacher MD; Bauer G; Fury B; Graeve S; Fledderman EL; Petrie TD; Coleal-Bergum DP; Hackett T; Perotti NH; Kong YY; Kwok WW; Wagner JP; Wiseman CL; Williams WV
    Front Immunol; 2018; 9():776. PubMed ID: 29867922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of specific cellular and humoral responses against renal cell carcinoma after combination therapy with cryoablation and granulocyte-macrophage colony stimulating factor: a pilot study.
    Thakur A; Littrup P; Paul EN; Adam B; Heilbrun LK; Lum LG
    J Immunother; 2011 Jun; 34(5):457-67. PubMed ID: 21577139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granulocyte-macrophage colony-stimulating factor gene transfer to dendritic cells or epidermal cells augments their antigen-presenting function including induction of anti-tumor immunity.
    Ozawa H; Ding W; Torii H; Hosoi J; Seiffert K; Campton K; Hackett NR; Topf N; Crystal RG; Granstein RD
    J Invest Dermatol; 1999 Dec; 113(6):999-1005. PubMed ID: 10594743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of G250-targeted and T-cell-mediated antitumor activity against renal cell carcinoma using a chimeric fusion protein consisting of G250 and granulocyte/monocyte-colony stimulating factor.
    Tso CL; Zisman A; Pantuck A; Calilliw R; Hernandez JM; Paik S; Nguyen D; Gitlitz B; Shintaku PI; de Kernion J; Figlin R; Belldegrun A
    Cancer Res; 2001 Nov; 61(21):7925-33. PubMed ID: 11691814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monoclonal Lym-1 antibody-dependent cytolysis by neutrophils exposed to granulocyte-macrophage colony-stimulating factor: intervention of FcgammaRII (CD32), CD11b-CD18 integrins, and CD66b glycoproteins.
    Ottonello L; Epstein AL; Dapino P; Barbera P; Morone P; Dallegri F
    Blood; 1999 May; 93(10):3505-11. PubMed ID: 10233903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14⁻/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer.
    Liu CY; Wang YM; Wang CL; Feng PH; Ko HW; Liu YH; Wu YC; Chu Y; Chung FT; Kuo CH; Lee KY; Lin SM; Lin HC; Wang CH; Yu CT; Kuo HP
    J Cancer Res Clin Oncol; 2010 Jan; 136(1):35-45. PubMed ID: 19572148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse CD8+ T-cell responses to renal cell carcinoma antigens in patients treated with an autologous granulocyte-macrophage colony-stimulating factor gene-transduced renal tumor cell vaccine.
    Zhou X; Jun DY; Thomas AM; Huang X; Huang LQ; Mautner J; Mo W; Robbins PF; Pardoll DM; Jaffee EM
    Cancer Res; 2005 Feb; 65(3):1079-88. PubMed ID: 15705910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.