These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 27374316)
1. Spike-timing dependent inhibitory plasticity to learn a selective gating of backpropagating action potentials. Wilmes KA; Schleimer JH; Schreiber S Eur J Neurosci; 2017 Apr; 45(8):1032-1043. PubMed ID: 27374316 [TBL] [Abstract][Full Text] [Related]
2. Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. Wilmes KA; Sprekeler H; Schreiber S PLoS Comput Biol; 2016 Mar; 12(3):e1004768. PubMed ID: 27003565 [TBL] [Abstract][Full Text] [Related]
3. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex. Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522 [TBL] [Abstract][Full Text] [Related]
7. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning. Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167 [TBL] [Abstract][Full Text] [Related]
8. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Saudargiene A; Cobb S; Graham BP Hippocampus; 2015 Feb; 25(2):208-18. PubMed ID: 25220633 [TBL] [Abstract][Full Text] [Related]
9. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Song S; Miller KD; Abbott LF Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623 [TBL] [Abstract][Full Text] [Related]
10. Spike timing-dependent plasticity: a Hebbian learning rule. Caporale N; Dan Y Annu Rev Neurosci; 2008; 31():25-46. PubMed ID: 18275283 [TBL] [Abstract][Full Text] [Related]
14. Local and global gating of synaptic plasticity. Sánchez-Montañés MA; Verschure PF; König P Neural Comput; 2000 Mar; 12(3):519-29. PubMed ID: 10769320 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric synaptic depression in cortical networks. Chelaru MI; Dragoi V Cereb Cortex; 2008 Apr; 18(4):771-88. PubMed ID: 17693394 [TBL] [Abstract][Full Text] [Related]
16. Learning by the dendritic prediction of somatic spiking. Urbanczik R; Senn W Neuron; 2014 Feb; 81(3):521-8. PubMed ID: 24507189 [TBL] [Abstract][Full Text] [Related]
17. Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance. Field RE; D'amour JA; Tremblay R; Miehl C; Rudy B; Gjorgjieva J; Froemke RC Neuron; 2020 Jun; 106(5):842-854.e4. PubMed ID: 32213321 [TBL] [Abstract][Full Text] [Related]
18. Spiking neurons, dopamine, and plasticity: timing is everything, but concentration also matters. Thivierge JP; Rivest F; Monchi O Synapse; 2007 Jun; 61(6):375-90. PubMed ID: 17372980 [TBL] [Abstract][Full Text] [Related]
19. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity. Babadi B; Abbott LF PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of the slow afterhyperpolarization restores the classical spike timing-dependent plasticity rule obeyed in layer 2/3 pyramidal cells of the prefrontal cortex. Zaitsev AV; Anwyl R J Neurophysiol; 2012 Jan; 107(1):205-15. PubMed ID: 21975445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]