These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 27374328)

  • 1. Adjacent Codons Act in Concert to Modulate Translation Efficiency in Yeast.
    Gamble CE; Brule CE; Dean KM; Fields S; Grayhack EJ
    Cell; 2016 Jul; 166(3):679-690. PubMed ID: 27374328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1.
    Letzring DP; Wolf AS; Brule CE; Grayhack EJ
    RNA; 2013 Sep; 19(9):1208-17. PubMed ID: 23825054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate.
    Gorochowski TE; Ignatova Z; Bovenberg RA; Roubos JA
    Nucleic Acids Res; 2015 Mar; 43(6):3022-32. PubMed ID: 25765653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.
    Weinberg DE; Shah P; Eichhorn SW; Hussmann JA; Plotkin JB; Bartel DP
    Cell Rep; 2016 Feb; 14(7):1787-1799. PubMed ID: 26876183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for codon order in translation dynamics.
    Cannarozzi G; Schraudolph NN; Faty M; von Rohr P; Friberg MT; Roth AC; Gonnet P; Gonnet G; Barral Y
    Cell; 2010 Apr; 141(2):355-67. PubMed ID: 20403329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.
    Hussmann JA; Patchett S; Johnson A; Sawyer S; Press WH
    PLoS Genet; 2015 Dec; 11(12):e1005732. PubMed ID: 26656907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of translation efficiency in yeast by codon-anticodon interactions.
    Letzring DP; Dean KM; Grayhack EJ
    RNA; 2010 Dec; 16(12):2516-28. PubMed ID: 20971810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
    Ingolia NT; Ghaemmaghami S; Newman JR; Weissman JS
    Science; 2009 Apr; 324(5924):218-23. PubMed ID: 19213877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GCN sensitive protein translation in yeast.
    Barr WA; Sheth RB; Kwon J; Cho J; Glickman JW; Hart F; Chatterji OK; Scopino K; Voelkel-Meiman K; Krizanc D; Thayer KM; Weir MP
    PLoS One; 2020; 15(9):e0233197. PubMed ID: 32946445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GNN Codon Adjacency Tunes Protein Translation.
    Sun J; Hwang P; Sakkas ED; Zhou Y; Perez L; Dave I; Kwon JB; McMahon AE; Wichman M; Raval M; Scopino K; Krizanc D; Thayer KM; Weir MP
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats.
    Wolf AS; Grayhack EJ
    RNA; 2015 May; 21(5):935-45. PubMed ID: 25792604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity.
    Nedialkova DD; Leidel SA
    Cell; 2015 Jun; 161(7):1606-18. PubMed ID: 26052047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribo-DT: An automated pipeline for inferring codon dwell times from ribosome profiling data.
    Gobet C; Naef F
    Methods; 2022 Jul; 203():10-16. PubMed ID: 34673173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
    Riba A; Di Nanni N; Mittal N; Arhné E; Schmidt A; Zavolan M
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15023-15032. PubMed ID: 31292258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scp160p is required for translational efficiency of codon-optimized mRNAs in yeast.
    Hirschmann WD; Westendorf H; Mayer A; Cannarozzi G; Cramer P; Jansen RP
    Nucleic Acids Res; 2014 Apr; 42(6):4043-55. PubMed ID: 24445806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putative anticodons in mitochondrial tRNA sidearm loops: Pocketknife tRNAs?
    Seligmann H
    J Theor Biol; 2014 Jan; 340():155-63. PubMed ID: 24012463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lso2 is a conserved ribosome-bound protein required for translational recovery in yeast.
    Wang YJ; Vaidyanathan PP; Rojas-Duran MF; Udeshi ND; Bartoli KM; Carr SA; Gilbert WV
    PLoS Biol; 2018 Sep; 16(9):e2005903. PubMed ID: 30208026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translation elongation and mRNA stability are coupled through the ribosomal A-site.
    Hanson G; Alhusaini N; Morris N; Sweet T; Coller J
    RNA; 2018 Oct; 24(10):1377-1389. PubMed ID: 29997263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of location of several specific inhibitory codon pairs in the Saccharomyces sensu stricto yeasts reveals translational selection.
    Ghoneim DH; Zhang X; Brule CE; Mathews DH; Grayhack EJ
    Nucleic Acids Res; 2019 Feb; 47(3):1164-1177. PubMed ID: 30576464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converting nonsense codons into sense codons by targeted pseudouridylation.
    Karijolich J; Yu YT
    Nature; 2011 Jun; 474(7351):395-8. PubMed ID: 21677757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.