These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27374493)
1. Hot Electrons at Solid-Liquid Interfaces: A Large Chemoelectric Effect during the Catalytic Decomposition of Hydrogen Peroxide. Nedrygailov II; Lee C; Moon SY; Lee H; Park JY Angew Chem Int Ed Engl; 2016 Aug; 55(36):10859-62. PubMed ID: 27374493 [TBL] [Abstract][Full Text] [Related]
2. Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide. Kim H; Kim YJ; Jung YS; Park JY Nanoscale Adv; 2020 Oct; 2(10):4410-4416. PubMed ID: 36132908 [TBL] [Abstract][Full Text] [Related]
3. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity. Park JY; Kim SM; Lee H; Nedrygailov II Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684 [TBL] [Abstract][Full Text] [Related]
4. How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface. Lee SW; Kim H; Park JY Nano Lett; 2023 Jun; 23(11):5373-5380. PubMed ID: 36930862 [TBL] [Abstract][Full Text] [Related]
5. Hot Electron Phenomena at Solid-Liquid Interfaces. Lee SW; Jeon B; Lee H; Park JY J Phys Chem Lett; 2022 Oct; 13(40):9435-9448. PubMed ID: 36194546 [TBL] [Abstract][Full Text] [Related]
6. The catalytic nanodiode: detecting continuous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction. Park JY; Somorjai GA Chemphyschem; 2006 Jul; 7(7):1409-13. PubMed ID: 16739158 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons. Somorjai GA; Bratlie KM; Montano MO; Park JY J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389 [TBL] [Abstract][Full Text] [Related]
8. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes. Jeon B; Lee C; Park JY ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596 [TBL] [Abstract][Full Text] [Related]
9. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence. Nedrygailov II; Lee C; Moon SY; Lee H; Park JY Rev Sci Instrum; 2016 Nov; 87(11):114101. PubMed ID: 27910578 [TBL] [Abstract][Full Text] [Related]
10. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction. Lee H; Nedrygailov II; Lee YK; Lee C; Choi H; Choi JS; Choi CG; Park JY Nano Lett; 2016 Mar; 16(3):1650-6. PubMed ID: 26910271 [TBL] [Abstract][Full Text] [Related]
11. Hot Electron Transport on Three-Dimensional Pt/Mesoporous TiO Jeon B; Lee H; Goddeti KC; Park JY ACS Appl Mater Interfaces; 2019 Apr; 11(16):15152-15159. PubMed ID: 30939872 [TBL] [Abstract][Full Text] [Related]
12. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes. Kang M; Jeon B; Park JY Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes. Hervier A; Renzas JR; Park JY; Somorjai GA Nano Lett; 2009 Nov; 9(11):3930-3. PubMed ID: 19731919 [TBL] [Abstract][Full Text] [Related]
14. Revealing the Loss Mechanism of Chemically-Induced Hot Electron Transport. Roh Y; Jin Y; Jeon B; Park Y; Yu K; Park JY Nano Lett; 2024 Mar; 24(11):3490-3497. PubMed ID: 38466136 [TBL] [Abstract][Full Text] [Related]
15. Hot electron-driven electrocatalytic hydrogen evolution reaction on metal-semiconductor nanodiode electrodes. Nedrygailov II; Moon SY; Park JY Sci Rep; 2019 Apr; 9(1):6208. PubMed ID: 30996284 [TBL] [Abstract][Full Text] [Related]
16. Chemical-reaction-induced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size. Lee H; Nedrygailov II; Lee C; Somorjai GA; Park JY Angew Chem Int Ed Engl; 2015 Feb; 54(8):2340-4. PubMed ID: 25645508 [TBL] [Abstract][Full Text] [Related]
17. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes. Lee YK; Lee H; Lee C; Hwang E; Park JY J Phys Condens Matter; 2016 Jun; 28(25):254006. PubMed ID: 27168177 [TBL] [Abstract][Full Text] [Related]
18. Facilitating Hot Electron Injection from Graphene to Semiconductor by Rectifying Contact for Vis-NIR-Driven H Hu WY; Li QY; Zhai GY; Lin YX; Li D; He XX; Lin X; Xu D; Sun LH; Zhang SN; Chen JS; Li XH Small; 2022 May; 18(19):e2200885. PubMed ID: 35396794 [TBL] [Abstract][Full Text] [Related]
19. The effect of hot electrons and surface plasmons on heterogeneous catalysis. Kim SM; Lee SW; Moon SY; Park JY J Phys Condens Matter; 2016 Jun; 28(25):254002. PubMed ID: 27166263 [TBL] [Abstract][Full Text] [Related]
20. Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode. Lee H; Yoon S; Jo J; Jeon B; Hyeon T; An K; Park JY Faraday Discuss; 2019 May; 214(0):353-364. PubMed ID: 30810549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]