These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27374493)
21. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles. Lee H; Lim J; Lee C; Back S; An K; Shin JW; Ryoo R; Jung Y; Park JY Nat Commun; 2018 Jun; 9(1):2235. PubMed ID: 29884825 [TBL] [Abstract][Full Text] [Related]
22. Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces. Lee SW; Kim JM; Park W; Lee H; Lee GR; Jung Y; Jung YS; Park JY Nat Commun; 2021 Jan; 12(1):40. PubMed ID: 33397946 [TBL] [Abstract][Full Text] [Related]
23. Chemistry of fast electrons. Maximoff SN; Head-Gordon MP Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11460-5. PubMed ID: 19561296 [TBL] [Abstract][Full Text] [Related]
24. Electron flow generated by gas phase exothermic catalytic reactions using a platinum-gallium nitride nanodiode. Ji X; Zuppero A; Gidwani JM; Somorjai GA J Am Chem Soc; 2005 Apr; 127(16):5792-3. PubMed ID: 15839669 [TBL] [Abstract][Full Text] [Related]
25. Scanning electrochemical microscopy #54. Application to the study of heterogeneous catalytic reactions-hydrogen peroxide decomposition. Fernández JL; Hurth C; Bard AJ J Phys Chem B; 2005 May; 109(19):9532-9. PubMed ID: 16852147 [TBL] [Abstract][Full Text] [Related]
26. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures. Kim SM; Lee C; Goddeti KC; Park JY Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052 [TBL] [Abstract][Full Text] [Related]
27. Mechanism for Generating H Berbille A; Li XF; Su Y; Li S; Zhao X; Zhu L; Wang ZL Adv Mater; 2023 Nov; 35(46):e2304387. PubMed ID: 37487242 [TBL] [Abstract][Full Text] [Related]
28. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu Lee SW; Hong JW; Lee H; Wi DH; Kim SM; Han SW; Park JY Nanoscale; 2018 Jun; 10(23):10835-10843. PubMed ID: 29694476 [TBL] [Abstract][Full Text] [Related]
29. Interface-confined oxide nanostructures for catalytic oxidation reactions. Fu Q; Yang F; Bao X Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033 [TBL] [Abstract][Full Text] [Related]
30. Hot-Electron-Induced Highly Efficient O2 Activation by Pt Nanoparticles Supported on Ta2O5 Driven by Visible Light. Sakamoto H; Ohara T; Yasumoto N; Shiraishi Y; Ichikawa S; Tanaka S; Hirai T J Am Chem Soc; 2015 Jul; 137(29):9324-32. PubMed ID: 26158296 [TBL] [Abstract][Full Text] [Related]
31. Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots. Lee C; Choi H; Nedrygailov II; Lee YK; Jeong S; Park JY ACS Appl Mater Interfaces; 2018 Feb; 10(5):5081-5089. PubMed ID: 29308649 [TBL] [Abstract][Full Text] [Related]
32. Mechanism and Kinetics of Hydrogen Peroxide Decomposition on Platinum Nanocatalysts. Serra-Maia R; Bellier M; Chastka S; Tranhuu K; Subowo A; Rimstidt JD; Usov PM; Morris AJ; Michel FM ACS Appl Mater Interfaces; 2018 Jun; 10(25):21224-21234. PubMed ID: 29851338 [TBL] [Abstract][Full Text] [Related]
33. Continuous hot electron generation in Pt/TiO2, Pd/TiO2, and Pt/GaN catalytic nanodiodes from oxidation of carbon monoxide. Ji XZ; Somorjai GA J Phys Chem B; 2005 Dec; 109(47):22530-5. PubMed ID: 16853934 [TBL] [Abstract][Full Text] [Related]
34. Surface Modification on Pd-TiO Liu P; Cai Z; You Y; Huang H; Chen S; Gao C; Qi Z; Long R; Zhu J; Song L; Xiong Y Chemistry; 2018 Dec; 24(69):18398-18402. PubMed ID: 30102805 [TBL] [Abstract][Full Text] [Related]
35. Harnessing Hot Electrons from Near IR Light for Hydrogen Production Using Pt-End-Capped-AuNRs. Ortiz N; Zoellner B; Hong SJ; Ji Y; Wang T; Liu Y; Maggard PA; Wang G ACS Appl Mater Interfaces; 2017 Aug; 9(31):25962-25969. PubMed ID: 28714663 [TBL] [Abstract][Full Text] [Related]
36. Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation. Goddeti KC; Lee H; Jeon B; Park JY Chem Commun (Camb); 2018 Aug; 54(65):8968-8971. PubMed ID: 29987273 [TBL] [Abstract][Full Text] [Related]
37. Enhancing the Photocatalytic Hydrogen Evolution Performance of a Metal/Semiconductor Catalyst through Modulation of the Schottky Barrier Height by Controlling the Orientation of the Interface. Liu Y; Gu X; Qi W; Zhu H; Shan H; Chen W; Tao P; Song C; Shang W; Deng T; Wu J ACS Appl Mater Interfaces; 2017 Apr; 9(14):12494-12500. PubMed ID: 28332389 [TBL] [Abstract][Full Text] [Related]
38. Catalytic production of hydrogen peroxide and water by oxygen-tolerant [NiFe]-hydrogenase during H2 cycling in the presence of O2. Lauterbach L; Lenz O J Am Chem Soc; 2013 Nov; 135(47):17897-905. PubMed ID: 24180286 [TBL] [Abstract][Full Text] [Related]
39. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation. Joshi AM; Delgass WN; Thomson KT J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]