BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 27374633)

  • 1. Emerging hydrogel designs for controlled protein delivery.
    Bae KH; Kurisawa M
    Biomater Sci; 2016 Aug; 4(8):1184-92. PubMed ID: 27374633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogels in controlled release formulations: network design and mathematical modeling.
    Lin CC; Metters AT
    Adv Drug Deliv Rev; 2006 Nov; 58(12-13):1379-408. PubMed ID: 17081649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEG hydrogels for the controlled release of biomolecules in regenerative medicine.
    Lin CC; Anseth KS
    Pharm Res; 2009 Mar; 26(3):631-43. PubMed ID: 19089601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.
    Molinos M; Carvalho V; Silva DM; Gama FM
    Biomacromolecules; 2012 Feb; 13(2):517-27. PubMed ID: 22288730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel nanocomposites as remote-controlled biomaterials.
    Satarkar NS; Zach Hilt J
    Acta Biomater; 2008 Jan; 4(1):11-6. PubMed ID: 17855176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional biohybrid hydrogels for cell culture and controlled drug release.
    Wang H; Han A; Cai Y; Xie Y; Zhou H; Long J; Yang Z
    Chem Commun (Camb); 2013 Aug; 49(67):7448-50. PubMed ID: 23860475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-responsive hybrid hydrogels: Chondroitin sulfate/casein trapped silica nanospheres for controlled drug release.
    Simão AR; Fragal VH; Lima AMO; Pellá MCG; Garcia FP; Nakamura CV; Tambourgi EB; Rubira AF
    Int J Biol Macromol; 2020 Apr; 148():302-315. PubMed ID: 31931066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery.
    Aimetti AA; Machen AJ; Anseth KS
    Biomaterials; 2009 Oct; 30(30):6048-54. PubMed ID: 19674784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.
    Tong X; Lee S; Bararpour L; Yang F
    Macromol Biosci; 2015 Dec; 15(12):1679-86. PubMed ID: 26259711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.
    Jiang Y; Chen J; Deng C; Suuronen EJ; Zhong Z
    Biomaterials; 2014 Jun; 35(18):4969-85. PubMed ID: 24674460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular cyclodextrin pseudorotaxane hydrogels: a candidate for sustained release?
    Chee PL; Prasad A; Fang X; Owh C; Yeo VJ; Loh XJ
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():6-12. PubMed ID: 24863190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecule-Responsive Hydrogels in Medicine.
    Sharifzadeh G; Hosseinkhani H
    Adv Healthc Mater; 2017 Dec; 6(24):. PubMed ID: 29057617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled and Extended Release of a Model Protein from a Microsphere-Hydrogel Drug Delivery System.
    Osswald CR; Kang-Mieler JJ
    Ann Biomed Eng; 2015 Nov; 43(11):2609-17. PubMed ID: 25835212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy.
    Liu J; Liu H; Kang H; Donovan M; Zhu Z; Tan W
    Anal Bioanal Chem; 2012 Jan; 402(1):187-94. PubMed ID: 22052153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogels in a historical perspective: from simple networks to smart materials.
    Buwalda SJ; Boere KW; Dijkstra PJ; Feijen J; Vermonden T; Hennink WE
    J Control Release; 2014 Sep; 190():254-73. PubMed ID: 24746623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery.
    Li J; Li X; Ni X; Wang X; Li H; Leong KW
    Biomaterials; 2006 Aug; 27(22):4132-40. PubMed ID: 16584769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels.
    Serra L; Doménech J; Peppas NA
    Biomaterials; 2006 Nov; 27(31):5440-51. PubMed ID: 16828864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release.
    Satarkar NS; Hilt JZ
    J Control Release; 2008 Sep; 130(3):246-51. PubMed ID: 18606201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintaining protein activity during hydrogel cross-linking.
    Park K
    J Control Release; 2016 Sep; 238():313. PubMed ID: 27597159
    [No Abstract]   [Full Text] [Related]  

  • 20. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.