These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27375064)

  • 1. Decontamination of indoor air to reduce the risk of airborne infections: Studies on survival and inactivation of airborne pathogens using an aerobiology chamber.
    Sattar SA; Kibbee RJ; Zargar B; Wright KE; Rubino JR; Ijaz MK
    Am J Infect Control; 2016 Oct; 44(10):e177-e182. PubMed ID: 27375064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne Pathogens inside Automobiles for Domestic Use: Assessing In-Car Air Decontamination Devices Using Staphylococcus aureus as the Challenge Bacterium.
    Sattar SA; Zargar B; Wright KE; Rubino JR; Ijaz MK
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28389537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative method to assess the role of indoor air decontamination to simultaneously reduce contamination of environmental surfaces: testing with vegetative and spore-forming bacteria.
    Zargar B; Sattar SA; Rubino JR; Ijaz MK
    Lett Appl Microbiol; 2019 Mar; 68(3):206-211. PubMed ID: 30578733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.
    Ijaz MK; Zargar B; Wright KE; Rubino JR; Sattar SA
    Am J Infect Control; 2016 Sep; 44(9 Suppl):S109-20. PubMed ID: 27590695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indoor air as a vehicle for human pathogens: Introduction, objectives, and expectation of outcome.
    Sattar SA
    Am J Infect Control; 2016 Sep; 44(9 Suppl):S95-S101. PubMed ID: 27590701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and quantitative capture of viable bacteriophages from experimentally contaminated indoor air: A model for the study of airborne vertebrate viruses including SARS-CoV-2.
    Zargar B; Sattar SA; Kibbee R; Rubino J; Khalid Ijaz M
    J Appl Microbiol; 2022 Feb; 132(2):1489-1495. PubMed ID: 34411388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor air quality improvement with filtration and UV-C on mitigation of particulate matter and airborne bacteria: Monitoring and modeling.
    Li P; Koziel JA; Paris RV; Macedo N; Zimmerman JJ; Wrzesinski D; Sobotka E; Balderas M; Walz WB; Liu D; Yedilbayev B; Ramirez BC; Jenks WS
    J Environ Manage; 2024 Feb; 351():119764. PubMed ID: 38100867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses.
    Duchaine C
    Am J Infect Control; 2016 Sep; 44(9 Suppl):S121-6. PubMed ID: 27590696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreasing airborne contamination levels in high-risk hospital areas using a novel mobile air-treatment unit.
    Bergeron V; Reboux G; Poirot JL; Laudinet N
    Infect Control Hosp Epidemiol; 2007 Oct; 28(10):1181-6. PubMed ID: 17828696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling and simulation of bacterial distribution in an aerobiology chamber using computational fluid dynamics.
    Zargar B; Kashkooli FM; Soltani M; Wright KE; Ijaz MK; Sattar SA
    Am J Infect Control; 2016 Sep; 44(9 Suppl):S127-37. PubMed ID: 27590697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of photocatalytic HEPA filter on microorganism removal.
    Chuaybamroong P; Chotigawin R; Supothina S; Sribenjalux P; Larpkiattaworn S; Wu CY
    Indoor Air; 2010 Jun; 20(3):246-54. PubMed ID: 20573124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slightly acidic electrolyzed water for reducing airborne microorganisms in a layer breeding house.
    Hao X; Cao W; Li B; Zhang Q; Wang C; Ge L
    J Air Waste Manag Assoc; 2014 Apr; 64(4):494-500. PubMed ID: 24843920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentrations of airborne culturable bacteria in 100 large US office buildings from the BASE study.
    Tsai FC; Macher JM
    Indoor Air; 2005; 15 Suppl 9():71-81. PubMed ID: 15910532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay.
    Gut IM; Bartlett RA; Yeager JJ; Leroux B; Ratnesar-Shumate S; Dabisch P; Karaolis DKR
    Appl Environ Microbiol; 2016 May; 82(9):2809-2818. PubMed ID: 26944839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleaning the air with ultraviolet germicidal irradiation lessened contact infections in a long-term acute care hospital.
    Ethington T; Newsome S; Waugh J; Lee LD
    Am J Infect Control; 2018 May; 46(5):482-486. PubMed ID: 29290480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pilot study to investigate the effects of combined dehumidification and HEPA filtration on dew point and airborne mold spore counts in day care centers.
    Bernstein JA; Levin L; Crandall MS; Perez A; Lanphear B
    Indoor Air; 2005 Dec; 15(6):402-7. PubMed ID: 16268830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of types of bacterial bio-aerosols and concentrations in the indoor air of gyms.
    Zavieh FS; Mohammadi MJ; Vosoughi M; Abazari M; Raesee E; Fazlzadeh M; Geravandi S; Behzad A
    Environ Geochem Health; 2021 May; 43(5):2165-2173. PubMed ID: 33400007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal aero-decontamination efficacy of mobile air-treatment systems.
    Fréalle E; Lestrez C; Skierlak T; Melboucy D; Guery B; Durand-Joly I; Delhaes L; Loukili N
    Med Mycol; 2011 Nov; 49(8):825-33. PubMed ID: 21526911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ceiling-mounted HEPA-UV air filters on airborne bacteria concentrations in an indoor therapy pool building.
    Kujundzic E; Zander DA; Hernandez M; Angenent LT; Henderson DE; Miller SL
    J Air Waste Manag Assoc; 2005 Feb; 55(2):210-8. PubMed ID: 15796111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of a novel mobile high-efficiency particulate air-ultraviolet air recirculation system on the bacterial air burden during routine care.
    Bischoff W; Russell G; Willard E; Stehle J
    Am J Infect Control; 2019 Aug; 47(8):1025-1027. PubMed ID: 30665778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.