BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 27375089)

  • 1. Observations of movement dynamics of flying insects using high resolution lidar.
    Kirkeby C; Wellenreuther M; Brydegaard M
    Sci Rep; 2016 Jul; 6():29083. PubMed ID: 27375089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect flight velocity measurement with a CW near-IR Scheimpflug lidar system.
    Li Y; Wang K; Quintero-Torres R; Brick R; Sokolov AV; Scully MO
    Opt Express; 2020 Jul; 28(15):21891-21902. PubMed ID: 32752461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking Small-Scale Flight Manoeuvers and Density Profiles to the Vertical Movement of Insects in the Nocturnal Stable Boundary Layer.
    Wainwright CE; Reynolds DR; Reynolds AM
    Sci Rep; 2020 Jan; 10(1):1019. PubMed ID: 31974508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continental-scale patterns in diel flight timing of high-altitude migratory insects.
    Haest B; Liechti F; Hawkes WL; Chapman J; Åkesson S; Shamoun-Baranes J; Nesterova AP; Comor V; Preatoni D; Bauer S
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230116. PubMed ID: 38705191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radar observations of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China.
    Feng HQ; Wu KM; Cheng DF; Guo YY
    Bull Entomol Res; 2003 Apr; 93(2):115-24. PubMed ID: 12699532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massive seasonal high-altitude migrations of nocturnal insects above the agricultural plains of East China.
    Huang J; Feng H; Drake VA; Reynolds DR; Gao B; Chen F; Zhang G; Zhu J; Gao Y; Zhai B; Li G; Tian C; Huang B; Hu G; Chapman JW
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2317646121. PubMed ID: 38648486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature, not net primary productivity, drives continental-scale variation in insect flight activity.
    Tielens EK; Kelly J
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230114. PubMed ID: 38705173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity, dynamics, direction, and magnitude of high-altitude migrating insects in the Sahel.
    Florio J; Verú LM; Dao A; Yaro AS; Diallo M; Sanogo ZL; Samaké D; Huestis DL; Yossi O; Talamas E; Chamorro ML; Frank JH; Biondi M; Morkel C; Bartlett C; Linton YM; Strobach E; Chapman JW; Reynolds DR; Faiman R; Krajacich BJ; Smith CS; Lehmann T
    Sci Rep; 2020 Nov; 10(1):20523. PubMed ID: 33239619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The movement of small insects in the convective boundary layer: linking patterns to processes.
    Wainwright CE; Stepanian PM; Reynolds DR; Reynolds AM
    Sci Rep; 2017 Jul; 7(1):5438. PubMed ID: 28710446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why flying insects gather at artificial light.
    Fabian ST; Sondhi Y; Allen PE; Theobald JC; Lin HT
    Nat Commun; 2024 Jan; 15(1):689. PubMed ID: 38291028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. More than 75 percent decline over 27 years in total flying insect biomass in protected areas.
    Hallmann CA; Sorg M; Jongejans E; Siepel H; Hofland N; Schwan H; Stenmans W; Müller A; Sumser H; Hörren T; Goulson D; de Kroon H
    PLoS One; 2017; 12(10):e0185809. PubMed ID: 29045418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass seasonal bioflows of high-flying insect migrants.
    Hu G; Lim KS; Horvitz N; Clark SJ; Reynolds DR; Sapir N; Chapman JW
    Science; 2016 Dec; 354(6319):1584-1587. PubMed ID: 28008067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nocturnal celestial illumination on high-flying migrant insects.
    Gao B; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230115. PubMed ID: 38705175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations.
    Reynolds DR; Chapman JW; Edwards AS; Smith AD; Wood CR; Barlow JF; Woiwod IP
    Bull Entomol Res; 2005 Jun; 95(3):259-74. PubMed ID: 15960880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Band Infrared Scheimpflug Lidar Reveals Insect Activity in a Tropical Cloud Forest.
    Santos V; Costa-Vera C; Rivera-Parra P; Burneo S; Molina J; Encalada D; Salvador J; Brydegaard M
    Appl Spectrosc; 2023 Jun; 77(6):593-602. PubMed ID: 37072925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal statistics of natural image sequences generated by movements with insect flight characteristics.
    Schwegmann A; Lindemann JP; Egelhaaf M
    PLoS One; 2014; 9(10):e110386. PubMed ID: 25340761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar.
    Jeffries DL; Chapman J; Roy HE; Humphries S; Harrington R; Brown PM; Handley LJ
    PLoS One; 2013; 8(12):e82278. PubMed ID: 24367512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording.
    Horton KG; Shriver WG; Buler JJ
    Ecol Appl; 2015 Mar; 25(2):390-401. PubMed ID: 26263662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.
    Reynolds DR; Smith AD; Chapman JW
    Bull Entomol Res; 2008 Feb; 98(1):35-52. PubMed ID: 18076783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring aerial insect biodiversity: a radar perspective.
    Bauer S; Tielens EK; Haest B
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230113. PubMed ID: 38705181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.