These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 27375089)

  • 21. Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest.
    Souza DG; Santos JC; Oliveira MA; Tabarelli M
    Environ Entomol; 2016 Oct; 45(5):1161-1169. PubMed ID: 27550163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England.
    Smith AD; Reynolds DR; Riley JR
    Bull Entomol Res; 2000 Jun; 90(3):265-77. PubMed ID: 10996867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors.
    Ren J; Wang X; Jin X; Manocha D
    PLoS One; 2016; 11(5):e0155698. PubMed ID: 27187068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The bat-bird-bug battle: daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar.
    Malmqvist E; Jansson S; Zhu S; Li W; Svanberg K; Svanberg S; Rydell J; Song Z; Bood J; Brydegaard M; Åkesson S
    R Soc Open Sci; 2018 Apr; 5(4):172303. PubMed ID: 29765679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colors of attraction: Modeling insect flight to light behavior.
    Donners M; van Grunsven RHA; Groenendijk D; van Langevelde F; Bikker JW; Longcore T; Veenendaal E
    J Exp Zool A Ecol Integr Physiol; 2018 Oct; 329(8-9):434-440. PubMed ID: 29944198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous monitoring of aerial density and circadian rhythms of flying insects in a semi-urban environment.
    Genoud AP; Williams GM; Thomas BP
    PLoS One; 2021; 16(11):e0260167. PubMed ID: 34793570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies.
    Devries PJ; Penz CM; Hill RI
    J Anim Ecol; 2010 Sep; 79(5):1077-85. PubMed ID: 20487088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies.
    Reynolds AM; Reynolds DR; Sane SP; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment.
    Frainer A; McKie BG; Malmqvist B
    J Anim Ecol; 2014 Mar; 83(2):460-9. PubMed ID: 26046457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size effects on insect hovering aerodynamics: an integrated computational study.
    Liu H; Aono H
    Bioinspir Biomim; 2009 Mar; 4(1):015002. PubMed ID: 19258688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Moveable Feast: Insects Moving at the Forest-Crop Interface Are Affected by Crop Phenology and the Amount of Forest in the Landscape.
    González E; Salvo A; Defagó MT; Valladares G
    PLoS One; 2016; 11(7):e0158836. PubMed ID: 27383505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.
    Jaime-González C; Acebes P; Mateos A; Mezquida ET
    PLoS One; 2017; 12(8):e0182451. PubMed ID: 28771566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    PLoS One; 2010 Dec; 5(12):e15758. PubMed ID: 21209956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring insect numbers and biodiversity with a vertical-beam entomological radar.
    Drake VA; Hao Z; Wang H
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230117. PubMed ID: 38705193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insect monitoring with fluorescence lidar techniques: field experiments.
    Guan Z; Brydegaard M; Lundin P; Wellenreuther M; Runemark A; Svensson EI; Svanberg S
    Appl Opt; 2010 Sep; 49(27):5133-42. PubMed ID: 20856288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards Quantitative Optical Cross Sections in Entomological Laser Radar - Potential of Temporal and Spherical Parameterizations for Identifying Atmospheric Fauna.
    Brydegaard M
    PLoS One; 2015; 10(8):e0135231. PubMed ID: 26295706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial monitoring of flying insects over a Swedish lake using a continuous-wave lidar system.
    Jansson S; Brydegaard M; Mei L; Li T; Larsson J; Malmqvist E; Åkesson S; Svanberg S
    R Soc Open Sci; 2023 May; 10(5):221557. PubMed ID: 37234499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring.
    Kozlov MV; Zverev V; Zvereva EL
    Sci Total Environ; 2017 Dec; 601-602():802-811. PubMed ID: 28578238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pollinators and Other Flying Insects inside and outside the Fukushima Evacuation Zone.
    Yoshioka A; Mishima Y; Fukasawa K
    PLoS One; 2015; 10(11):e0140957. PubMed ID: 26561045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.