These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27375262)

  • 21. Development and validation of PCR primers to assess the diversity of Clostridium spp. in cheese by temporal temperature gradient gel electrophoresis.
    Le Bourhis AG; Saunier K; Doré J; Carlier JP; Chamba JF; Popoff MR; Tholozan JL
    Appl Environ Microbiol; 2005 Jan; 71(1):29-38. PubMed ID: 15640166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Genomics Provides Insights Into Genetic Diversity of
    Podrzaj L; Burtscher J; Domig KJ
    Front Microbiol; 2022; 13():889551. PubMed ID: 35722315
    [No Abstract]   [Full Text] [Related]  

  • 23. Development of a risk assessment model to predict the occurrence of late blowing defect in Gouda cheese and evaluate potential intervention strategies.
    Qian C; Martin NH; Wiedmann M; Trmčić A
    J Dairy Sci; 2022 Apr; 105(4):2880-2894. PubMed ID: 35086711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a specific fluorescent phage endolysin for in situ detection of Clostridium species associated with cheese spoilage.
    Gómez-Torres N; Dunne M; Garde S; Meijers R; Narbad A; Ávila M; Mayer MJ
    Microb Biotechnol; 2018 Mar; 11(2):332-345. PubMed ID: 29160025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification, activity and delivery of new LysFA67 endolysin to target cheese spoilage Clostridium tyrobutyricum.
    Sánchez C; Garde S; Landete JM; Calzada J; Baker DJ; Evans R; Narbad A; Mayer MJ; Ávila M
    Food Microbiol; 2024 Feb; 117():104401. PubMed ID: 37919009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights from the complete genome sequence of Clostridium tyrobutyricum provide a platform for biotechnological and industrial applications.
    Wu Q; Liu T; Zhu L; Huang H; Jiang L
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1245-1260. PubMed ID: 28536840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses.
    Lee J; Jang YS; Han MJ; Kim JY; Lee SY
    mBio; 2016 Jun; 7(3):. PubMed ID: 27302759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colorimetric Point-of-Care Detection of
    Cecere P; Gatto F; Cortimiglia C; Bassi D; Lucchini F; Cocconcelli PS; Pompa PP
    Biosensors (Basel); 2021 Aug; 11(9):. PubMed ID: 34562883
    [No Abstract]   [Full Text] [Related]  

  • 29. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.
    Ruusunen M; Surakka A; Korkeala H; Lindström M
    J Food Prot; 2012 Oct; 75(10):1791-5. PubMed ID: 23043827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and identification of anaerobic contaminants from a machine for producing processed cheese.
    Savoy de Giori G; Font de Valdéz G; Pesce de Ruiz Holgado A; Oliver G
    Rev Argent Microbiol; 1982; 14(2):105-10. PubMed ID: 6965246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enumeration and confirmation of Clostridium tyrobutyricum in silages using neutral red, D-cycloserine, and lactate dehydrogenase activity.
    Jonsson A
    J Dairy Sci; 1990 Mar; 73(3):719-25. PubMed ID: 2341647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of Clostridium tyrobutyricum spores using polyclonal antibodies and flow cytometry.
    Lavilla M; Marzo I; de Luis R; Perez MD; Calvo M; Sánchez L
    J Appl Microbiol; 2010 Feb; 108(2):488-98. PubMed ID: 19659701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of Clostridium tyrobutyricum removal through natural creaming of milk: A microscopy study.
    D'Incecco P; Faoro F; Silvetti T; Schrader K; Pellegrino L
    J Dairy Sci; 2015 Aug; 98(8):5164-72. PubMed ID: 26051312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of temperature on the microstructure of fat globules and the immunoglobulin-mediated interactions between fat and bacteria in natural raw milk creaming.
    D'Incecco P; Ong L; Pellegrino L; Faoro F; Barbiroli A; Gras S
    J Dairy Sci; 2018 Apr; 101(4):2984-2997. PubMed ID: 29398025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short communication: jenny milk as an inhibitor of late blowing in cheese: a preliminary report.
    Cosentino C; Paolino R; Freschi P; Calluso AM
    J Dairy Sci; 2013 Jun; 96(6):3547-50. PubMed ID: 23587377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria.
    Vissers MM; Driehuis F; Te Giffel MC; De Jong P; Lankveld JM
    J Dairy Sci; 2006 Mar; 89(3):850-8. PubMed ID: 16507677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential application of aromatic plant extracts to prevent cheese blowing.
    Librán CM; Moro A; Zalacain A; Molina A; Carmona M; Berruga MI
    World J Microbiol Biotechnol; 2013 Jul; 29(7):1179-88. PubMed ID: 23417280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative detection of Clostridium tyrobutyricum in milk by real-time PCR.
    López-Enríquez L; Rodríguez-Lázaro D; Hernández M
    Appl Environ Microbiol; 2007 Jun; 73(11):3747-51. PubMed ID: 17449705
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Prinčič L; Burtscher J; Sacken P; Krajnc T; Domig KJ
    Front Microbiol; 2024; 15():1353321. PubMed ID: 38414773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of jenny milk addition on the inhibition of late blowing in semihard cheese.
    Cosentino C; Paolino R; Valentini V; Musto M; Ricciardi A; Adduci F; D'Adamo C; Pecora G; Freschi P
    J Dairy Sci; 2015 Aug; 98(8):5133-42. PubMed ID: 26074234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.