These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27375273)

  • 21. The vulnerability of animal and human health to parasites under global change.
    Sutherst RW
    Int J Parasitol; 2001 Jul; 31(9):933-48. PubMed ID: 11406142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Marine viruses and global climate change.
    Danovaro R; Corinaldesi C; Dell'anno A; Fuhrman JA; Middelburg JJ; Noble RT; Suttle CA
    FEMS Microbiol Rev; 2011 Nov; 35(6):993-1034. PubMed ID: 21204862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems.
    Nielsen UN; Ball BA
    Glob Chang Biol; 2015 Apr; 21(4):1407-21. PubMed ID: 25363193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate change microbiology - problems and perspectives.
    Hutchins DA; Jansson JK; Remais JV; Rich VI; Singh BK; Trivedi P
    Nat Rev Microbiol; 2019 Jun; 17(6):391-396. PubMed ID: 31092905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate change and infectious diseases: from evidence to a predictive framework.
    Altizer S; Ostfeld RS; Johnson PT; Kutz S; Harvell CD
    Science; 2013 Aug; 341(6145):514-9. PubMed ID: 23908230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Projecting marine species range shifts from only temperature can mask climate vulnerability.
    McHenry J; Welch H; Lester SE; Saba V
    Glob Chang Biol; 2019 Dec; 25(12):4208-4221. PubMed ID: 31487434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in Microclimate Ecology Arising from Remote Sensing.
    Zellweger F; De Frenne P; Lenoir J; Rocchini D; Coomes D
    Trends Ecol Evol; 2019 Apr; 34(4):327-341. PubMed ID: 30651180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Range-expanding pests and pathogens in a warming world.
    Bebber DP
    Annu Rev Phytopathol; 2015; 53():335-56. PubMed ID: 26047565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing the consequences of global change for forest disturbance from herbivores and pathogens.
    Ayres MP; Lombardero MJ
    Sci Total Environ; 2000 Nov; 262(3):263-86. PubMed ID: 11087032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.
    Xie GY; Olson DH; Blaustein AR
    PLoS One; 2016; 11(8):e0160746. PubMed ID: 27513565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arctic climatechange and its impacts on the ecology of the North Atlantic.
    Greene CH; Pershing AJ; Cronin TM; Ceci N
    Ecology; 2008 Nov; 89(11 Suppl):S24-38. PubMed ID: 19097482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions.
    Nagelkerken I; Connell SD
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13272-7. PubMed ID: 26460052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature tracking by North Sea benthic invertebrates in response to climate change.
    Hiddink JG; Burrows MT; García Molinos J
    Glob Chang Biol; 2015 Jan; 21(1):117-29. PubMed ID: 25179407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioerosion in a changing world: a conceptual framework.
    Davidson TM; Altieri AH; Ruiz GM; Torchin ME
    Ecol Lett; 2018 Mar; 21(3):422-438. PubMed ID: 29314575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bivalve aquaculture-environment interactions in the context of climate change.
    Filgueira R; Guyondet T; Comeau LA; Tremblay R
    Glob Chang Biol; 2016 Dec; 22(12):3901-3913. PubMed ID: 27324415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial risk assessment of global change impacts on Swedish seagrass ecosystems.
    Perry D; Hammar L; Linderholm HW; Gullström M
    PLoS One; 2020; 15(1):e0225318. PubMed ID: 31978099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change.
    David JF; Handa IT
    Biol Rev Camb Philos Soc; 2010 Nov; 85(4):881-95. PubMed ID: 20412191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics.
    Gehman AM; Hall RJ; Byers JE
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):744-749. PubMed ID: 29311324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity.
    McMahon SM; Harrison SP; Armbruster WS; Bartlein PJ; Beale CM; Edwards ME; Kattge J; Midgley G; Morin X; Prentice IC
    Trends Ecol Evol; 2011 May; 26(5):249-59. PubMed ID: 21474198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate warming and disease risks for terrestrial and marine biota.
    Harvell CD; Mitchell CE; Ward JR; Altizer S; Dobson AP; Ostfeld RS; Samuel MD
    Science; 2002 Jun; 296(5576):2158-62. PubMed ID: 12077394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.