These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27375405)

  • 1. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm.
    Ladstein J; Evensmoen HR; Håberg AK; Kristoffersen A; Goa PE
    Front Neurosci; 2016; 10():225. PubMed ID: 27375405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7 Tesla.
    Jorge J; Figueiredo P; van der Zwaag W; Marques JP
    Magn Reson Imaging; 2013 Feb; 31(2):212-20. PubMed ID: 22921734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables.
    Jann K; Smith RX; Rios Piedra EA; Dapretto M; Wang DJ
    Front Neurosci; 2016; 10():371. PubMed ID: 27601973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI.
    Stirnberg R; Huijbers W; Brenner D; Poser BA; Breteler M; Stöcker T
    Neuroimage; 2017 Dec; 163():81-92. PubMed ID: 28923276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of physiological noise on accelerated 2D and 3D resting state functional MRI data at 7 T.
    Reynaud O; Jorge J; Gruetter R; Marques JP; van der Zwaag W
    Magn Reson Med; 2017 Sep; 78(3):888-896. PubMed ID: 28686788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of signal instability in 2D and 3D EPI resting-state fMRI.
    Goerke U; Möller HE; Norris DG; Schwarzbauer C
    NMR Biomed; 2005 Dec; 18(8):534-42. PubMed ID: 16206130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure.
    Bright MG; Murphy K
    Neuroimage; 2015 Jul; 114():158-69. PubMed ID: 25862264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Motion Regression of Resting-State Data Using a Convolutional Neural Network Model.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Cordes D;
    Front Neurosci; 2019; 13():169. PubMed ID: 31057348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The quest for the best: The impact of different EPI sequences on the sensitivity of random effect fMRI group analyses.
    Kirilina E; Lutti A; Poser BA; Blankenburg F; Weiskopf N
    Neuroimage; 2016 Feb; 126():49-59. PubMed ID: 26515905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of MR-Encephalography for BCI/Neurofeedback applications with high temporal resolution.
    Lührs M; Riemenschneider B; Eck J; Andonegui AB; Poser BA; Heinecke A; Krause F; Esposito F; Sorger B; Hennig J; Goebel R
    Neuroimage; 2019 Jul; 194():228-243. PubMed ID: 30910728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved temporal resolution for functional studies with reduced number of segments with three-dimensional echo planar imaging.
    Narsude M; van der Zwaag W; Kober T; Gruetter R; Marques JP
    Magn Reson Med; 2014 Sep; 72(3):786-92. PubMed ID: 24136782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust spinal cord resting-state fMRI using independent component analysis-based nuisance regression noise reduction.
    Hu Y; Jin R; Li G; Luk KD; Wu EX
    J Magn Reson Imaging; 2018 Nov; 48(5):1421-1431. PubMed ID: 29659087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI in the presence of task-correlated breathing variations.
    Birn RM; Murphy K; Handwerker DA; Bandettini PA
    Neuroimage; 2009 Sep; 47(3):1092-104. PubMed ID: 19460443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T.
    Ragot DM; Chen JJ
    Magn Reson Imaging; 2019 Apr; 57():328-336. PubMed ID: 30439514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and temporal characteristics of physiological noise in fMRI at 3T.
    Liu CS; Miki A; Hulvershorn J; Bloy L; Gualtieri EE; Liu GT; Leigh JS; Haselgrove JC; Elliott MA
    Acad Radiol; 2006 Mar; 13(3):313-23. PubMed ID: 16488843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An exploration of task based fMRI in neonates using echo-shifting to allow acquisition at longer TE without loss of temporal efficiency.
    Ferrazzi G; Nunes RG; Arichi T; Gaspar AS; Barone G; Allievi A; Vasylechko S; Abaei M; Hughes E; Rueckert D; Price AN; Hajnal JV
    Neuroimage; 2016 Feb; 127():298-306. PubMed ID: 26708014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR imaging of the liver using an ultrafast 3D multi-shot EPI sequence. Comparison with four other T1-weighted sequences.
    Papanikolaou N; Karantanas A; Lavdas E
    Acta Radiol; 1999 May; 40(3):322-5. PubMed ID: 10335972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.
    Wei H; Zhang Y; Gibbs E; Chen NK; Wang N; Liu C
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 26887812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized INverse imaging (GIN): ultrafast fMRI with physiological noise correction.
    Boyacioğlu R; Barth M
    Magn Reson Med; 2013 Oct; 70(4):962-71. PubMed ID: 23097342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.