BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27375499)

  • 1. Muscle MCT4 Content Is Correlated with the Lactate Removal Ability during Recovery Following All-Out Supramaximal Exercise in Highly-Trained Rowers.
    Maciejewski H; Bourdin M; Féasson L; Dubouchaud H; Denis C; Freund H; Messonnier LA
    Front Physiol; 2016; 7():223. PubMed ID: 27375499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-oxidative Energy Supply Correlates with Lactate Transport and Removal in Trained Rowers.
    Maciejewski H; Bourdin M; Féasson L; Dubouchaud H; Messonnier LA
    Int J Sports Med; 2020 Oct; 41(13):936-943. PubMed ID: 32643774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans.
    Thomas C; Perrey S; Lambert K; Hugon G; Mornet D; Mercier J
    J Appl Physiol (1985); 2005 Mar; 98(3):804-9. PubMed ID: 15531559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle.
    Dubouchaud H; Butterfield GE; Wolfel EE; Bergman BC; Brooks GA
    Am J Physiol Endocrinol Metab; 2000 Apr; 278(4):E571-9. PubMed ID: 10751188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate exchange and removal abilities in rowing performance.
    Messonnier L; Freund H; Bourdin M; Belli A; Lacour JR
    Med Sci Sports Exerc; 1997 Mar; 29(3):396-401. PubMed ID: 9139180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle.
    Bonen A
    Eur J Appl Physiol; 2001 Nov; 86(1):6-11. PubMed ID: 11820324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle.
    Pilegaard H; Terzis G; Halestrap A; Juel C
    Am J Physiol; 1999 May; 276(5):E843-8. PubMed ID: 10329977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of training on lactate kinetics parameters and their influence on short high-intensity exercise performance.
    Messonnier L; Freund H; Denis C; Féasson L; Lacour JR
    Int J Sports Med; 2006 Jan; 27(1):60-6. PubMed ID: 16388444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia.
    Messonnier L; Freund H; Féasson L; Prieur F; Castells J; Denis C; Linossier MT; Geyssant A; Lacour JR
    Eur J Appl Physiol; 2001 May; 84(5):403-12. PubMed ID: 11417427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners.
    Bickham DC; Bentley DJ; Le Rossignol PF; Cameron-Smith D
    Eur J Appl Physiol; 2006 Apr; 96(6):636-43. PubMed ID: 16408234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle.
    Enoki T; Yoshida Y; Lally J; Hatta H; Bonen A
    J Physiol; 2006 Nov; 577(Pt 1):433-43. PubMed ID: 16959859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans.
    Juel C; Holten MK; Dela F
    J Physiol; 2004 Apr; 556(Pt 1):297-304. PubMed ID: 14724187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers.
    Evertsen F; Medbø JI; Bonen A
    Acta Physiol Scand; 2001 Oct; 173(2):195-205. PubMed ID: 11683677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate accumulation in response to supramaximal exercise in rowers.
    Maciejewski H; Bourdin M; Lacour JR; Denis C; Moyen B; Messonnier L
    Scand J Med Sci Sports; 2013 Oct; 23(5):585-92. PubMed ID: 22288604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.
    Pilegaard H; Domino K; Noland T; Juel C; Hellsten Y; Halestrap AP; Bangsbo J
    Am J Physiol; 1999 Feb; 276(2):E255-61. PubMed ID: 9950784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MCT1 and MCT4 kinetic of mRNA expression in different tissues after aerobic exercise at maximal lactate steady state workload.
    de Araujo GG; Gobatto CA; de Barros Manchado-Gobatto F; Teixeira LF; Dos Reis IG; Caperuto LC; Papoti M; Bordin S; Cavaglieri CR; Verlengia R
    Physiol Res; 2015; 64(4):513-22. PubMed ID: 25470525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle.
    Takimoto M; Takeyama M; Hamada T
    Metabolism; 2013 Nov; 62(11):1633-40. PubMed ID: 23886299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of streptozotocin-induced diabetes on markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters.
    Py G; Lambert K; Milhavet O; Eydoux N; Préfaut C; Mercier J
    Metabolism; 2002 Jul; 51(7):807-13. PubMed ID: 12077722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise rapidly increases expression of the monocarboxylate transporters MCT1 and MCT4 in rat muscle.
    Coles L; Litt J; Hatta H; Bonen A
    J Physiol; 2004 Nov; 561(Pt 1):253-61. PubMed ID: 15388779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of high-intensity training on muscle lactate transporters and postexercise recovery of muscle lactate and hydrogen ions in women.
    Bishop D; Edge J; Thomas C; Mercier J
    Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R1991-8. PubMed ID: 18832090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.