BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27375668)

  • 1. Stover Composition in Maize and Sorghum Reveals Remarkable Genetic Variation and Plasticity for Carbohydrate Accumulation.
    Sekhon RS; Breitzman MW; Silva RR; Santoro N; Rooney WL; de Leon N; Kaeppler SM
    Front Plant Sci; 2016; 7():822. PubMed ID: 27375668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Availability of reduced N and carbohydrates for ear development of maize.
    Below FE; Christensen LE; Reed AJ; Hageman RH
    Plant Physiol; 1981 Nov; 68(5):1186-90. PubMed ID: 16662072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production.
    Slewinski TL
    J Exp Bot; 2012 Aug; 63(13):4647-70. PubMed ID: 22732107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential Sucrose transporter expression.
    Bihmidine S; Baker RF; Hoffner C; Braun DM
    BMC Plant Biol; 2015 Jul; 15():186. PubMed ID: 26223524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining sucrose and glucose levels in dual-purpose sorghum stalks by Fourier transform near infrared (FT-NIR) spectroscopy.
    Chen SF; Danao MG; Singh V; Brown PJ
    J Sci Food Agric; 2014 Sep; 94(12):2569-76. PubMed ID: 24590962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of carbon and nitrogen metabolism in the productivity of maize.
    Swank JC; Below FE; Lambert RJ; Hageman RH
    Plant Physiol; 1982 Oct; 70(4):1185-90. PubMed ID: 16662636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assaying Sorghum for Fuel Production.
    Payne C; Sluiter J; Wolfrum E
    Methods Mol Biol; 2019; 1931():257-267. PubMed ID: 30652296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology and whole-plant carbon partitioning during stem sugar accumulation in sweet dwarf sorghum.
    Babst BA; Karve A; Sementilli A; Dweikat I; Braun DM
    Planta; 2021 Sep; 254(4):80. PubMed ID: 34546416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize.
    Liang XG; Gao Z; Zhang L; Shen S; Zhao X; Liu YP; Zhou LL; Paul MJ; Zhou SL
    BMC Plant Biol; 2019 Nov; 19(1):508. PubMed ID: 31752685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proper Glyphosate Application at Post-anthesis Lowers Grain Moisture Content at Harvest and Reallocates Non-structural Carbohydrates in Maize.
    Zhao L; Xie L; Huang J; Su Y; Zhang C
    Front Plant Sci; 2020; 11():580883. PubMed ID: 33362811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.
    Brenton ZW; Cooper EA; Myers MT; Boyles RE; Shakoor N; Zielinski KJ; Rauh BL; Bridges WC; Morris GP; Kresovich S
    Genetics; 2016 Sep; 204(1):21-33. PubMed ID: 27356613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grain, sugar and biomass accumulation in photoperiod-sensitive sorghums. II. Biochemical processes at internode level and interaction with phenology.
    Gutjahr S; Cl Ment-Vidal A; Soutiras A; Sonderegger N; Braconnier S; Dingkuhn ML; Luquet D
    Funct Plant Biol; 2013 May; 40(4):355-368. PubMed ID: 32481113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Net ecosystem exchange of CO
    Wagle P; Gowda PH; Moorhead JE; Marek GW; Brauer DK
    Sci Total Environ; 2018 Oct; 637-638():163-173. PubMed ID: 29751299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Historical Synthesis-Analysis of Changes in Grain Nitrogen Dynamics in Sorghum.
    Ciampitti IA; Prasad PV
    Front Plant Sci; 2016; 7():275. PubMed ID: 27014299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source-to-Sink Translocation of Carbon and Nitrogen Is Regulated by Fertilization and Plant Population in Maize-Pea Intercropping.
    Zhao Y; Fan Z; Hu F; Yin W; Zhao C; Yu A; Chai Q
    Front Plant Sci; 2019; 10():891. PubMed ID: 31354765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Deficit: A Multiscale Analysis from Internode Tissue to Plant Level.
    Perrier L; Rouan L; Jaffuel S; Clément-Vidal A; Roques S; Soutiras A; Baptiste C; Bastianelli D; Fabre D; Dubois C; Pot D; Luquet D
    Front Plant Sci; 2017; 8():1516. PubMed ID: 28919904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoplastic infusion of sucrose into stem internodes during female flowering does not increase grain yield in maize plants grown under nitrogen-limiting conditions.
    Peng Y; Li C; Fritschi FB
    Physiol Plant; 2013 Aug; 148(4):470-80. PubMed ID: 23061679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals.
    Tao Y; Zhao X; Wang X; Hathorn A; Hunt C; Cruickshank AW; van Oosterom EJ; Godwin ID; Mace ES; Jordan DR
    Plant Biotechnol J; 2020 Apr; 18(4):1093-1105. PubMed ID: 31659829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.