These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27375824)

  • 1. Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup.
    Keshavarz B; McKinley GH
    Biomicrofluidics; 2016 Jul; 10(4):043502. PubMed ID: 27375824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of relaxation times in extensional flow of weakly viscoelastic polymer solutions.
    Sousa PC; Vega EJ; Sousa RG; Montanero JM; Alves MA
    Rheol Acta; 2017; 56(1):11-20. PubMed ID: 32355366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakup Dynamics of Semi-dilute Polymer Solutions in a Microfluidic Flow-focusing Device.
    Xue CD; Chen XD; Li YJ; Hu GQ; Cao T; Qin KR
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer.
    Sharma V; Haward SJ; Serdy J; Keshavarz B; Soderlund A; Threlfall-Holmes P; McKinley GH
    Soft Matter; 2015 Apr; 11(16):3251-70. PubMed ID: 25782987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions.
    Dinic J; Zhang Y; Jimenez LN; Sharma V
    ACS Macro Lett; 2015 Jul; 4(7):804-808. PubMed ID: 35596480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensional flow behavior of aqueous guar gum derivative solutions by capillary breakup elongational rheometry (CaBER).
    Szopinski D; Handge UA; Kulicke WM; Abetz V; Luinstra GA
    Carbohydr Polym; 2016 Jan; 136():834-40. PubMed ID: 26572419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic extensional rheometry using stagnation point flow.
    Haward SJ
    Biomicrofluidics; 2016 Jul; 10(4):043401. PubMed ID: 27099647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensional rheological data from ex-situ measurements for predicting porous media behaviour of the viscoelastic EOR polymers.
    Azad MS; Trivedi JJ
    Data Brief; 2018 Oct; 20():293-305. PubMed ID: 30167437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extensional flow of blood analog solutions in microfluidic devices.
    Sousa PC; Pinho FT; Oliveira MS; Alves MA
    Biomicrofluidics; 2011 Mar; 5(1):14108. PubMed ID: 21483662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear and extensional rheology of commercial thickeners used for dysphagia management.
    Waqas MQ; Wiklund J; Altskär A; Ekberg O; Stading M
    J Texture Stud; 2017 Dec; 48(6):507-517. PubMed ID: 28464563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric filament thinning and breakup in microchannels.
    Arratia PE; Gollub JP; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036309. PubMed ID: 18517513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology of human blood plasma: viscoelastic versus Newtonian behavior.
    Brust M; Schaefer C; Doerr R; Pan L; Garcia M; Arratia PE; Wagner C
    Phys Rev Lett; 2013 Feb; 110(7):078305. PubMed ID: 25166417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.
    Zografos K; Pimenta F; Alves MA; Oliveira MS
    Biomicrofluidics; 2016 Jul; 10(4):043508. PubMed ID: 27478523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fluid dynamics of a viscoelastic fluid dripping onto a substrate.
    Zinelis K; Abadie T; McKinley GH; Matar OK
    Soft Matter; 2024 Oct; 20(41):8198-8214. PubMed ID: 39365107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-volume extensional rheology of concentrated protein and protein-excipient solutions.
    Lauser KT; Rueter AL; Calabrese MA
    Soft Matter; 2021 Nov; 17(42):9624-9635. PubMed ID: 34622265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation and breakup of viscoelastic droplets in confined shear flow.
    Gupta A; Sbragaglia M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023305. PubMed ID: 25215849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-controlled dripping-onto-substrate (DoS) extensional rheometry of polymer micelle solutions.
    Zhang DY; Calabrese MA
    Soft Matter; 2022 May; 18(20):3993-4008. PubMed ID: 35552577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of particle stiffness on the extensional rheology of model rod-like nanoparticle suspensions.
    Lang C; Hendricks J; Zhang Z; Reddy NK; Rothstein JP; Lettinga MP; Vermant J; Clasen C
    Soft Matter; 2019 Jan; 15(5):833-841. PubMed ID: 30488939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.