These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27375827)

  • 41. Rheology and microrheology of deformable droplet suspensions.
    Foglino M; Morozov AN; Marenduzzo D
    Soft Matter; 2018 Nov; 14(46):9361-9367. PubMed ID: 30431641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Slip on a particle surface as the possible origin of shear thinning in non-Brownian suspensions.
    Kroupa M; Soos M; Kosek J
    Phys Chem Chem Phys; 2017 Feb; 19(8):5979-5984. PubMed ID: 28180210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rheology, microstructure and migration in brownian colloidal suspensions.
    Pan W; Caswell B; Karniadakis GE
    Langmuir; 2010 Jan; 26(1):133-42. PubMed ID: 20038167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure-property relationship of a soft colloidal glass in simple and mixed flows.
    Calabrese V; Varchanis S; Haward SJ; Tsamopoulos J; Shen AQ
    J Colloid Interface Sci; 2021 Nov; 601():454-466. PubMed ID: 34126412
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Viscosity Estimation of a Suspension with Rigid Spheres in Circular Microchannels Using Particle Tracking Velocimetry.
    Kawaguchi M; Fukui T; Funamoto K; Tanaka M; Tanaka M; Murata S; Miyauchi S; Hayase T
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shear Thinning of Noncolloidal Suspensions.
    Vázquez-Quesada A; Tanner RI; Ellero M
    Phys Rev Lett; 2016 Sep; 117(10):108001. PubMed ID: 27636496
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stability of active suspensions.
    Hohenegger C; Shelley MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046311. PubMed ID: 20481831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geometric control of active collective motion.
    Theillard M; Alonso-Matilla R; Saintillan D
    Soft Matter; 2017 Jan; 13(2):363-375. PubMed ID: 27906393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rheology of colloidal suspensions in confined flow: Treatment of hydrodynamic interactions in particle-based simulations inspired by dynamical density functional theory.
    Jabeen Z; Yu HY; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Phys Rev E; 2018 Oct; 98(4):. PubMed ID: 30687804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective viscosity of puller-like microswimmers: a renormalization approach.
    Gluzman S; Karpeev DA; Berlyand LV
    J R Soc Interface; 2013 Dec; 10(89):20130720. PubMed ID: 24068178
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discontinuous shear thickening in confined dilute carbon nanotube suspensions.
    Majumdar S; Krishnaswamy R; Sood AK
    Proc Natl Acad Sci U S A; 2011 May; 108(22):8996-9001. PubMed ID: 21576501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.
    Lefauve A; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021002. PubMed ID: 25353410
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interparticle and Brownian forces controlling particle aggregation and rheology of silicate melts containing platinum-group element particles.
    Pereira L; Vasseur J; Wadsworth FB; Trixler F; Dingwell DB
    Sci Rep; 2022 Jun; 12(1):9226. PubMed ID: 35654866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors affecting shear thickening behavior of a concentrated injectable suspension of levodopa.
    Allahham A; Stewart P; Marriott J; Mainwaring D
    J Pharm Sci; 2005 Nov; 94(11):2393-402. PubMed ID: 16200618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rheological properties of deionized Chinese ink.
    Kimura H; Nakayama Y; Tsuchida A; Okubo T
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):236-40. PubMed ID: 17254756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.