These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27375827)

  • 61. Modeling the rheology of suspensions with high-viscosity solvents: a predictive multiscale approach.
    Chatterjee A; Heine DR; Rovelstad AL; Wu LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021406. PubMed ID: 19792123
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effective confinement as origin of the equivalence of kinetic temperature and fluctuation-dissipation ratio in a dense shear-driven suspension.
    Lander B; Seifert U; Speck T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021103. PubMed ID: 22463149
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The rheology of concentrated suspensions of arbitrarily-shaped particles.
    Santamaría-Holek I; Mendoza CI
    J Colloid Interface Sci; 2010 Jun; 346(1):118-26. PubMed ID: 20303498
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rheology of 3D printable ceramic suspensions: effects of non-adsorbing polymer on discontinuous shear thickening.
    Corder RD; Chen YJ; Pibulchinda P; Youngblood JP; Ardekani AM; Erk KA
    Soft Matter; 2023 Feb; 19(5):882-891. PubMed ID: 36645088
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects.
    Gross M; Krüger T; Varnik F
    Soft Matter; 2014 Jun; 10(24):4360-72. PubMed ID: 24796957
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rheology of regenerated cellulose suspension and influence of sodium alginate.
    Jiang Y; De La Cruz JA; Ding L; Wang B; Feng X; Mao Z; Xu H; Sui X
    Int J Biol Macromol; 2020 Apr; 148():811-816. PubMed ID: 31962069
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard spheres near the jamming transition.
    Mills P; Snabre P
    Eur Phys J E Soft Matter; 2009 Nov; 30(3):309-16. PubMed ID: 19856003
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Layering instability in a confined suspension flow.
    Zurita-Gotor M; Bławzdziewicz J; Wajnryb E
    Phys Rev Lett; 2012 Feb; 108(6):068301. PubMed ID: 22401126
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hydrodynamics control shear-induced pattern formation in attractive suspensions.
    Varga Z; Grenard V; Pecorario S; Taberlet N; Dolique V; Manneville S; Divoux T; McKinley GH; Swan JW
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12193-12198. PubMed ID: 31164423
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Brownian dynamics simulation of orientational behavior, flow-induced structure, and rheological properties of a suspension of oblate spheroid particles under simple shear.
    Yamamoto T; Suga T; Mori N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021509. PubMed ID: 16196575
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Lubrication model of suspension flow in a hydraulic fracture with frictional rheology for shear-induced migration and jamming.
    Dontsov EV; Boronin SA; Osiptsov AA; Derbyshev DY
    Proc Math Phys Eng Sci; 2019 Jun; 475(2226):20190039. PubMed ID: 31293359
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rheology of Water Flows Confined between Multilayer Graphene Walls.
    Li F; Korotkin IA; Karabasov SA
    Langmuir; 2020 May; 36(20):5633-5646. PubMed ID: 32370511
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Three-dimensional model for the effective viscosity of bacterial suspensions.
    Haines BM; Sokolov A; Aranson IS; Berlyand L; Karpeev DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041922. PubMed ID: 19905357
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of pH on deagglomeration and rheology/morphology of aqueous suspensions of goethite nanopowder.
    Ding P; Pacek AW
    J Colloid Interface Sci; 2008 Sep; 325(1):165-72. PubMed ID: 18571662
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Generality of shear thickening in dense suspensions.
    Brown E; Forman NA; Orellana CS; Zhang H; Maynor BW; Betts DE; DeSimone JM; Jaeger HM
    Nat Mater; 2010 Mar; 9(3):220-4. PubMed ID: 20118945
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dynamical density functional theory for microswimmers.
    Menzel AM; Saha A; Hoell C; Löwen H
    J Chem Phys; 2016 Jan; 144(2):024115. PubMed ID: 26772562
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enskog kinetic theory of rheology for a moderately dense inertial suspension.
    Takada S; Hayakawa H; Santos A; Garzó V
    Phys Rev E; 2020 Aug; 102(2-1):022907. PubMed ID: 32942481
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Kinetic theory of shear thickening for a moderately dense gas-solid suspension: From discontinuous thickening to continuous thickening.
    Hayakawa H; Takada S; Garzó V
    Phys Rev E; 2017 Oct; 96(4-1):042903. PubMed ID: 29347493
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Shear-Induced Breakup of Cellulose Nanocrystal Aggregates.
    Xu HN; Tang YY; Ouyang XK
    Langmuir; 2017 Jan; 33(1):235-242. PubMed ID: 27936767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.