These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27375953)

  • 1. Cell morphology-based classification of red blood cells using holographic imaging informatics.
    Yi F; Moon I; Javidi B
    Biomed Opt Express; 2016 Jun; 7(6):2385-99. PubMed ID: 27375953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.
    Yi F; Moon I; Lee YH
    J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated red blood cells extraction from holographic images using fully convolutional neural networks.
    Yi F; Moon I; Javidi B
    Biomed Opt Express; 2017 Oct; 8(10):4466-4479. PubMed ID: 29082078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.
    Moon I; Yi F; Lee YH; Javidi B; Boss D; Marquet P
    Opt Express; 2013 Dec; 21(25):30947-57. PubMed ID: 24514667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells.
    Moon I; Javidi B; Yi F; Boss D; Marquet P
    Opt Express; 2012 Apr; 20(9):10295-309. PubMed ID: 22535119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated segmentation of multiple red blood cells with digital holographic microscopy.
    Yi F; Moon I; Javidi B; Boss D; Marquet P
    J Biomed Opt; 2013 Feb; 18(2):26006. PubMed ID: 23370481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2016 Dec; 21(12):126015. PubMed ID: 28006044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy.
    Moon I; Yi F; Rappaz B
    Appl Opt; 2016 Jan; 55(3):A86-94. PubMed ID: 26835962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated three-dimensional morphology-based clustering of human erythrocytes with regular shapes: stomatocytes, discocytes, and echinocytes.
    Ahmadzadeh E; Jaferzadeh K; Lee J; Moon I
    J Biomed Opt; 2017 Jul; 22(7):76015. PubMed ID: 28742920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis.
    Liu R; Dey DK; Boss D; Marquet P; Javidi B
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1204-10. PubMed ID: 21643406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional identification of stem cells by computational holographic imaging.
    Moon I; Javidi B
    J R Soc Interface; 2007 Apr; 4(13):305-13. PubMed ID: 17251147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated three-dimensional microbial sensing and recognition using digital holography and statistical sampling.
    Moon I; Yi F; Javidi B
    Sensors (Basel); 2010; 10(9):8437-51. PubMed ID: 22163664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging.
    Jaferzadeh K; Gholami S; Moon I
    Appl Opt; 2016 Dec; 55(36):10409-10416. PubMed ID: 28059271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying morphological heterogeneity: a study of more than 1 000 000 individual stored red blood cells.
    Piety NZ; Gifford SC; Yang X; Shevkoplyas SS
    Vox Sang; 2015 Oct; 109(3):221-30. PubMed ID: 25900518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Phenotypic Assessment of Red Cell Storage Lesions for Safe Transfusions.
    Kim E; Park S; Hwang S; Moon I; Javidi B
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1318-1328. PubMed ID: 34388103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer.
    Rappaz B; Barbul A; Emery Y; Korenstein R; Depeursinge C; Magistretti PJ; Marquet P
    Cytometry A; 2008 Oct; 73(10):895-903. PubMed ID: 18615599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells.
    Go T; Kim JH; Byeon H; Lee SJ
    J Biophotonics; 2018 Sep; 11(9):e201800101. PubMed ID: 29676064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep ensemble learning enables highly accurate classification of stored red blood cell morphology.
    Routt AH; Yang N; Piety NZ; Lu M; Shevkoplyas SS
    Sci Rep; 2023 Feb; 13(1):3152. PubMed ID: 36823298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks.
    Yi F; Park S; Moon I
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33686845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy.
    Kim Y; Kim J; Seo E; Lee SJ
    Biosens Bioelectron; 2023 Jun; 229():115232. PubMed ID: 36963327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.