These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27375953)

  • 21. Automatic detection and characterization of quantitative phase images of thalassemic red blood cells using a mask region-based convolutional neural network.
    Lin YH; Liao KY; Sung KB
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33188571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of red blood cell aggregation using empirical wavelet transform analysis of ultrasonic radiofrequency echo signals.
    Liao Z; Zhang Y; Li Z; He B; Lang X; Liang H; Chen J
    Ultrasonics; 2021 Jul; 114():106419. PubMed ID: 33740499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy.
    Weng J; Zhong J; Hu C
    Opt Express; 2008 Dec; 16(26):21971-81. PubMed ID: 19104632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Enhanced Spring-Particle Model for Red Blood Cell Structural Mechanics: Application to the Stomatocyte-Discocyte-Echinocyte Transformation.
    Chen M; Boyle FJ
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28813551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated classification of cell morphology by coherence-controlled holographic microscopy.
    Strbkova L; Zicha D; Vesely P; Chmelik R
    J Biomed Opt; 2017 Aug; 22(8):1-9. PubMed ID: 28836416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2015 Nov; 20(11):111218. PubMed ID: 26502322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D morphometry of red blood cells by digital holography.
    Memmolo P; Miccio L; Merola F; Gennari O; Netti PA; Ferraro P
    Cytometry A; 2014 Dec; 85(12):1030-6. PubMed ID: 25242067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A human erythrocytes hologram dataset for learning-based model training.
    Castañeda R; Trujillo C; Doblas A
    Data Brief; 2024 Jun; 54():110424. PubMed ID: 38708305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D shape reconstruction of normal and cancerous red blood cells using digital holographic tomography: Combination of angular spectrum method and multiplicative technique.
    Ibrahim DGA
    J Microsc; 2022 Sep; 287(3):156-166. PubMed ID: 35802005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy.
    Rappaz B; Barbul A; Hoffmann A; Boss D; Korenstein R; Depeursinge C; Magistretti PJ; Marquet P
    Blood Cells Mol Dis; 2009; 42(3):228-32. PubMed ID: 19324576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical pupil manipulation for speckle reduction in digital holographic microscopy.
    Buitrago-Duque C; Garcia-Sucerquia J
    Heliyon; 2021 Jan; 7(1):e06098. PubMed ID: 33553757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of the zero-order term in off-axis digital holography through nonlinear filtering.
    Pavillon N; Seelamantula CS; Kühn J; Unser M; Depeursinge C
    Appl Opt; 2009 Dec; 48(34):H186-95. PubMed ID: 19956290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition and classification of three-dimensional phase objects by digital Fresnel holography.
    Nelleri A; Joseph J; Singh K
    Appl Opt; 2006 Jun; 45(17):4046-53. PubMed ID: 16761044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-shifting digital holographic microscopy with an iterative blind reconstruction algorithm.
    Doblas A; Buitrago-Duque C; Robinson A; Garcia-Sucerquia J
    Appl Opt; 2019 Dec; 58(34):G311-G317. PubMed ID: 31873515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase reconstruction of digital holography with the peak of the two-dimensional Gabor wavelet transform.
    Weng J; Zhong J; Hu C
    Appl Opt; 2009 Jun; 48(18):3308-16. PubMed ID: 19543336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated three-dimensional tracking of living cells by digital holographic microscopy.
    Langehanenberg P; Ivanova L; Bernhardt I; Ketelhut S; Vollmer A; Dirksen D; Georgiev G; von Bally G; Kemper B
    J Biomed Opt; 2009; 14(1):014018. PubMed ID: 19256706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy.
    He X; Nguyen CV; Pratap M; Zheng Y; Wang Y; Nisbet DR; Williams RJ; Rug M; Maier AG; Lee WM
    Biomed Opt Express; 2016 Aug; 7(8):3111-23. PubMed ID: 27570702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography.
    Zhao J; Jiang H; Di J
    Opt Express; 2008 Feb; 16(4):2514-9. PubMed ID: 18542331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wavelet-based tracking of bacteria in unreconstructed off-axis holograms.
    Marin Z; Wallace JK; Nadeau J; Khalil A
    Methods; 2018 Mar; 136():60-65. PubMed ID: 28916149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.