These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27376262)

  • 21. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron based photoanodes for solar fuel production.
    Bassi PS; Gurudayal ; Wong LH; Barber J
    Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.
    Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T
    Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy.
    He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F
    ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe
    Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P
    ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface treatment of hematite photoanodes with zinc acetate for water oxidation.
    Xi L; Bassi PS; Chiam SY; Mak WF; Tran PD; Barber J; Chye Loo JS; Wong LH
    Nanoscale; 2012 Aug; 4(15):4430-3. PubMed ID: 22688799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal oxide photoanodes for water splitting.
    Augustyński J; Alexander BD; Solarska R
    Top Curr Chem; 2011; 303():1-38. PubMed ID: 21506001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances.
    Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cooperative Catalytic Effect of ZrO
    Shaddad MN; Ghanem MA; Al-Mayouf AM; Gimenez S; Bisquert J; Herraiz-Cardona I
    ChemSusChem; 2016 Oct; 9(19):2779-2783. PubMed ID: 27585108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges.
    Tamirat AG; Rick J; Dubale AA; Su WN; Hwang BJ
    Nanoscale Horiz; 2016 Jul; 1(4):243-267. PubMed ID: 32260645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA
    ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solar-Driven H2 O2 Generation From H2 O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts.
    Wang R; Pan K; Han D; Jiang J; Xiang C; Huang Z; Zhang L; Xiang X
    ChemSusChem; 2016 Sep; 9(17):2470-9. PubMed ID: 27484581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.