BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 27376351)

  • 1. Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna.
    Bae E; Samanta P; Yoo J; Jung J
    Ecotoxicol Environ Saf; 2016 Oct; 132():366-71. PubMed ID: 27376351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomic and oxidative effects of quantum dots-indolicidin on three generations of Daphnia magna.
    Falanga A; Mercurio FA; Siciliano A; Lombardi L; Galdiero S; Guida M; Libralato G; Leone M; Galdiero E
    Aquat Toxicol; 2018 May; 198():158-164. PubMed ID: 29547731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on chronic toxicity of copper, zinc, and nickel to Daphnia magna.
    Pereira CMS; Deruytter D; Blust R; De Schamphelaere KAC
    Environ Toxicol Chem; 2017 Jul; 36(7):1909-1916. PubMed ID: 27976806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multigenerational effects of nickel on Daphnia magna depend on temperature and the magnitude of the effect in the first generation.
    Pereira CMS; Everaert G; Blust R; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Jul; 37(7):1877-1888. PubMed ID: 29542829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and food concentration have limited influence on the mixture toxicity of copper and Microcystis aeruginosa to Daphnia magna.
    Hochmuth JD; Janssen CR; De Schamphelaere KA
    Environ Toxicol Chem; 2016 Mar; 35(3):742-9. PubMed ID: 26354710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multigenerational plasticity of Daphnia magna under thermal stress across ten generations.
    Im H; Na J; Jung J
    Ecotoxicol Environ Saf; 2020 May; 194():110400. PubMed ID: 32135379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First insight of the intergenerational effects of tri-n-butyl phosphate and polystyrene microplastics to Daphnia magna.
    Chen X; Gan Y; Yang X; Zhong L; Zhang M; Lin M; Qing X; Wang J; Huang Y
    Sci Total Environ; 2024 Oct; 945():174114. PubMed ID: 38906280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles.
    Mwaanga P; Carraway ER; van den Hurk P
    Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna--a multigenerational study.
    Dietrich S; Ploessl F; Bracher F; Laforsch C
    Chemosphere; 2010 Mar; 79(1):60-6. PubMed ID: 20116828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging of nanosized titanium dioxide modulates the effects of dietary copper exposure on Daphnia magna - an assessment over two generations.
    Roy R; Kempter L; Philippe A; Bollinger E; Grünling L; Sivagnanam M; Meyer F; Feckler A; Seitz F; Schulz R; Bundschuh M
    Ecotoxicol Environ Saf; 2024 Mar; 272():116031. PubMed ID: 38309236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effects of graphene and graphene oxide on copper toxicity to Daphnia magna: Role of surface oxygenic functional groups.
    Liu Y; Fan W; Xu Z; Peng W; Luo S
    Environ Pollut; 2018 May; 236():962-970. PubMed ID: 29137888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The developmental toxicity of 1-methyl-3-octylimidazolium bromide on Daphnia magna.
    Luo YR; Li XY; Chen XX; Zhang BJ; Sun ZJ; Wang JJ
    Environ Toxicol; 2008 Dec; 23(6):736-44. PubMed ID: 18442076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic toxicity of dietary copper to Daphnia magna.
    De Schamphelaere KA; Forrez I; Dierckens K; Sorgeloos P; Janssen CR
    Aquat Toxicol; 2007 Mar; 81(4):409-18. PubMed ID: 17316837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multigenerational effects evaluation of the flame retardant tris(2-butoxyethyl) phosphate (TBOEP) using Daphnia magna.
    Giraudo M; Dubé M; Lépine M; Gagnon P; Douville M; Houde M
    Aquat Toxicol; 2017 Sep; 190():142-149. PubMed ID: 28711770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna.
    Adam N; Vakurov A; Knapen D; Blust R
    J Hazard Mater; 2015; 283():416-22. PubMed ID: 25464278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of multigeneration acclimation to copper on tolerance, energy reserves, and homeostasis of Daphnia magna straus.
    Bossuyt BT; Janssen CR
    Environ Toxicol Chem; 2004 Aug; 23(8):2029-37. PubMed ID: 15352494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and concentration of ZnO particles affect life history traits and oxidative stress in Daphnia magna.
    Sanpradit P; Buapet P; Kongseng S; Peerakietkhajorn S
    Aquat Toxicol; 2020 Jul; 224():105517. PubMed ID: 32485496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological perturbations in several generations of Daphnia magna straus exposed to diazinon.
    Sánchez M; Ferrando MD; Sancho E; Andreu E
    Ecotoxicol Environ Saf; 2000 May; 46(1):87-94. PubMed ID: 10805998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The individual and population effects of tetracycline on Daphnia magna in multigenerational exposure.
    Kim HY; Lee MJ; Yu SH; Kim SD
    Ecotoxicology; 2012 May; 21(4):993-1002. PubMed ID: 22252291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.