These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27376402)

  • 1. Fast blood-flow simulation for large arterial trees containing thousands of vessels.
    Muller A; Clarke R; Ho H
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):160-170. PubMed ID: 27376402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Introduction and advantage analysis of the stepwise method for the construction of vascular trees].
    Zhang Y; Xie H; Zhu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):902-6. PubMed ID: 20842868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions.
    Olufsen MS; Peskin CS; Kim WY; Pedersen EM; Nadim A; Larsen J
    Ann Biomed Eng; 2000; 28(11):1281-99. PubMed ID: 11212947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An effective fractal-tree closure model for simulating blood flow in large arterial networks.
    Perdikaris P; Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outflow boundary conditions for blood flow in arterial trees.
    Du T; Hu D; Cai D
    PLoS One; 2015; 10(5):e0128597. PubMed ID: 26000782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization.
    Karch R; Neumann F; Neumann M; Schreiner W
    Comput Biol Med; 1999 Jan; 29(1):19-38. PubMed ID: 10207653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient full space-time discretization method for subject-specific hemodynamic simulations of cerebral arterial blood flow with distensible wall mechanics.
    Park CS; Alaraj A; Du X; Charbel FT; Linninger AA
    J Biomech; 2019 Apr; 87():37-47. PubMed ID: 30876734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model.
    Müller LO; Blanco PJ; Watanabe SM; Feijóo RA
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26695621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of pulsatile blood flow in arterial trees of retinal vasculature.
    Ganesan P; He S; Xu H
    Med Eng Phys; 2011 Sep; 33(7):810-23. PubMed ID: 21044855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear stress distribution in arterial tree models, generated by constrained constructive optimization.
    Schreiner W; Neumann F; Karch R; Neumann M; Roedler SM; End A
    J Theor Biol; 1999 May; 198(1):27-45. PubMed ID: 10329113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models.
    Blanco PJ; Müller LO; Watanabe SM; Feijóo RA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1663-1678. PubMed ID: 32034549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-dimensional fluid dynamic model of the systemic arteries.
    Olufsen MS
    Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer generation of complex arterial tree models.
    Schreiner W
    J Biomed Eng; 1993 Mar; 15(2):148-50. PubMed ID: 8459695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized arterial trees supplying hollow organs.
    Schreiner W; Karch R; Neumann M; Neumann F; Szawlowski P; Roedler S
    Med Eng Phys; 2006 Jun; 28(5):416-29. PubMed ID: 16144769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.