BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27376402)

  • 1. Fast blood-flow simulation for large arterial trees containing thousands of vessels.
    Muller A; Clarke R; Ho H
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):160-170. PubMed ID: 27376402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Introduction and advantage analysis of the stepwise method for the construction of vascular trees].
    Zhang Y; Xie H; Zhu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):902-6. PubMed ID: 20842868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions.
    Olufsen MS; Peskin CS; Kim WY; Pedersen EM; Nadim A; Larsen J
    Ann Biomed Eng; 2000; 28(11):1281-99. PubMed ID: 11212947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An effective fractal-tree closure model for simulating blood flow in large arterial networks.
    Perdikaris P; Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outflow boundary conditions for blood flow in arterial trees.
    Du T; Hu D; Cai D
    PLoS One; 2015; 10(5):e0128597. PubMed ID: 26000782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization.
    Karch R; Neumann F; Neumann M; Schreiner W
    Comput Biol Med; 1999 Jan; 29(1):19-38. PubMed ID: 10207653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient full space-time discretization method for subject-specific hemodynamic simulations of cerebral arterial blood flow with distensible wall mechanics.
    Park CS; Alaraj A; Du X; Charbel FT; Linninger AA
    J Biomech; 2019 Apr; 87():37-47. PubMed ID: 30876734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the ADAN model.
    Müller LO; Blanco PJ; Watanabe SM; Feijóo RA
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26695621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of pulsatile blood flow in arterial trees of retinal vasculature.
    Ganesan P; He S; Xu H
    Med Eng Phys; 2011 Sep; 33(7):810-23. PubMed ID: 21044855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear stress distribution in arterial tree models, generated by constrained constructive optimization.
    Schreiner W; Neumann F; Karch R; Neumann M; Roedler SM; End A
    J Theor Biol; 1999 May; 198(1):27-45. PubMed ID: 10329113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models.
    Blanco PJ; Müller LO; Watanabe SM; Feijóo RA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1663-1678. PubMed ID: 32034549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-dimensional fluid dynamic model of the systemic arteries.
    Olufsen MS
    Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer generation of complex arterial tree models.
    Schreiner W
    J Biomed Eng; 1993 Mar; 15(2):148-50. PubMed ID: 8459695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized arterial trees supplying hollow organs.
    Schreiner W; Karch R; Neumann M; Neumann F; Szawlowski P; Roedler S
    Med Eng Phys; 2006 Jun; 28(5):416-29. PubMed ID: 16144769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.