These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27376592)

  • 1. Optimisation of percutaneous coronary intervention: indispensables for bioresorbable scaffolds.
    Tenekecioglu E; Bourantas CV; Abdelghani M; Sotomi Y; Suwannasom P; Tateishi H; Onuma Y; Yılmaz M; Serruys PW
    Expert Rev Cardiovasc Ther; 2016 Sep; 14(9):1053-70. PubMed ID: 27376592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging-guided pre-dilatation, stenting, post-dilatation: a protocolized approach highlighting the importance of intravascular imaging for implantation of bioresorbable scaffolds.
    Ali ZA; Karimi Galougahi K; Shlofmitz R; Maehara A; Mintz GS; Abizaid A; Chamié D; Hill J; Serruys PW; Onuma Y; Stone GW
    Expert Rev Cardiovasc Ther; 2018 Jun; 16(6):431-440. PubMed ID: 29732926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of invasive imaging in acute and long-term assessment of bioresorbable scaffold technology.
    Chamié D; Garcia-Garcia H; Costa RA; Onuma Y; Abizaid A; Serruys PW
    Catheter Cardiovasc Interv; 2016 Nov; 88(S1):38-53. PubMed ID: 27797463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current perspectives on the role of bioresorbable scaffolds in the management of coronary artery disease.
    Dziewierz A; Dudek D
    Kardiol Pol; 2018; 76(7):1043-1054. PubMed ID: 30251247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percutaneous Coronary Intervention With Bioresorbable Scaffolds in a Young Child.
    Nazif TM; Kalra S; Ali ZA; Karmpaliotis D; Turner ME; Starc TJ; Cao Y; Marboe CC; Collins MB; Leon MB; Kirtane AJ
    JAMA Cardiol; 2017 Apr; 2(4):430-434. PubMed ID: 28030655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioresorbable Scaffolds: Clinical Outcomes and Considerations.
    Capodanno D
    Interv Cardiol Clin; 2016 Jul; 5(3):357-363. PubMed ID: 28582033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantation of bioresorbable scaffolds under guidance of optical coherence tomography: Feasibility and pilot clinical results of a systematic protocol.
    Gutiérrez-Chico JL; Cortés C; Schincariol M; Limon U; Yalcinli M; Durán-Cortés MA; Jaguszewski M
    Cardiol J; 2018; 25(4):443-458. PubMed ID: 29774520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of overlapping on 1-year clinical outcomes in patients undergoing everolimus-eluting bioresorbable scaffolds implantation in routine clinical practice: Insights from the European multicenter GHOST-EU registry.
    Ortega-Paz L; Capodanno D; Giacchi G; Gori T; Nef H; Latib A; Caramanno G; Di Mario C; Naber C; Lesiak M; Capranzano P; Wiebe J; Mehilli J; Araszkiewicz A; Pyxaras S; Mattesini A; Geraci S; Naganuma T; Colombo A; Münzel T; Sabaté M; Tamburino C; Brugaletta S
    Catheter Cardiovasc Interv; 2017 Apr; 89(5):812-818. PubMed ID: 27515568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion in calcific lesions and overall clinical outcomes following bioresorbable scaffold implantation optimized with intravascular ultrasound.
    Kawamoto H; Ruparelia N; Latib A; Miyazaki T; Sato K; Tanaka A; Naganuma T; Sticchi A; Chieffo A; Carlino M; Montorfano M; Colombo A
    Catheter Cardiovasc Interv; 2017 Apr; 89(5):789-797. PubMed ID: 27545845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge vascular response after percutaneous coronary intervention: an intracoronary ultrasound and optical coherence tomography appraisal: from radioactive platforms to first- and second-generation drug-eluting stents and bioresorbable scaffolds.
    Gogas BD; Garcia-Garcia HM; Onuma Y; Muramatsu T; Farooq V; Bourantas CV; Serruys PW
    JACC Cardiovasc Interv; 2013 Mar; 6(3):211-21. PubMed ID: 23517830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial experience of percutaneous coronary intervention in bifurcations with bioresorbable vascular scaffolds using different techniques--insights from optical coherence tomography.
    Attizzani GF; Ohno Y; Capranzano P; La Manna A; Francaviglia B; Grasso C; Sgroi C; Tamburino C; Longo G; Fujino Y; Capodanno D; Tamburino C
    Int J Cardiol; 2013 Dec; 170(2):e33-5. PubMed ID: 24210418
    [No Abstract]   [Full Text] [Related]  

  • 12. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results.
    Verheye S; Ormiston JA; Stewart J; Webster M; Sanidas E; Costa R; Costa JR; Chamie D; Abizaid AS; Pinto I; Morrison L; Toyloy S; Bhat V; Yan J; Abizaid A
    JACC Cardiovasc Interv; 2014 Jan; 7(1):89-99. PubMed ID: 24139932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current perspectives on bioresorbable scaffolds in coronary intervention and other fields.
    Wu X; Wu S; Kawashima H; Hara H; Ono M; Gao C; Wang R; Lunardi M; Sharif F; Wijns W; Serruys PW; Onuma Y
    Expert Rev Med Devices; 2021 Apr; 18(4):351-365. PubMed ID: 33739213
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of acute expansion of bioresorbable vascular scaffolds versus metallic drug-eluting stents in different degrees of calcification: An Optical Coherence Tomography Study.
    Ming Fam J; van Der Sijde JN; Karanasos A; Felix C; Diletti R; van Mieghem N; de Jaegere P; Zijlstra F; Jan van Geuns R; Regar E
    Catheter Cardiovasc Interv; 2017 Apr; 89(5):798-810. PubMed ID: 27717119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical outcomes following bifurcation double-stenting with bioresorbable scaffolds.
    Tanaka A; Latib A; Kawamoto H; Jabbour RJ; Mangieri A; Pagnesi M; Montalto C; Regazzoli D; Ancona M; Chieffo A; Carlino M; Montorfano M; Colombo A
    Catheter Cardiovasc Interv; 2016 Nov; 88(6):854-862. PubMed ID: 27184769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioresorbable Scaffolds for the Management of Coronary Bifurcation Lesions.
    Kawamoto H; Ruparelia N; Tanaka A; Chieffo A; Latib A; Colombo A
    JACC Cardiovasc Interv; 2016 May; 9(10):989-1000. PubMed ID: 27198679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term outcome of bioresorbable vascular scaffolds for the treatment of coronary artery disease: a meta-analysis of RCTs.
    Polimeni A; Anadol R; Münzel T; Indolfi C; De Rosa S; Gori T
    BMC Cardiovasc Disord; 2017 Jun; 17(1):147. PubMed ID: 28592227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioresorbable vascular scaffolds for the treatment of coronary artery disease: Clinical outcomes from randomized controlled trials.
    Rizik DG; Hermiller JB; Kereiakes DJ
    Catheter Cardiovasc Interv; 2016 Nov; 88(S1):21-30. PubMed ID: 27797464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of the art: the inception, advent and future of fully bioresorbable scaffolds.
    Katagiri Y; Stone GW; Onuma Y; Serruys PW
    EuroIntervention; 2017 Aug; 13(6):734-750. PubMed ID: 28844034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging and functional assessment of bioresorbable scaffolds.
    Pighi M; Tanguay JF; L'allier PL
    Minerva Cardioangiol; 2016 Aug; 64(4):442-61. PubMed ID: 27195663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.