These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27376748)

  • 1. Electrochemical regeneration of phenol-saturated activated carbon - proposal of a reactor.
    Zanella O; Bilibio D; Priamo WL; Tessaro IC; Féris LA
    Environ Technol; 2017 Mar; 38(5):549-557. PubMed ID: 27376748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical in situ regeneration of granular activated carbon using a three-dimensional reactor.
    Sun H; Liu Z; Wang Y; Li Y
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S77-9. PubMed ID: 25078844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter.
    Narbaitz RM; Karimi-Jashni A
    Environ Technol; 2009 Jan; 30(1):27-36. PubMed ID: 19213463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical and FTIR studies of the mutual influence of lead(II) or iron(III) and phenol on their adsorption from aqueous acid solution by modified activated carbons.
    Pakuła M; Walczyk M; Biniak S; Swiatkowski A
    Chemosphere; 2007 Sep; 69(2):209-19. PubMed ID: 17553547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical regeneration of field spent GAC from two water treatment plants.
    Narbaitz RM; McEwen J
    Water Res; 2012 Oct; 46(15):4852-60. PubMed ID: 22749905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel electro-fenton approach for regeneration of activated carbon.
    Bañuelos JA; Rodríguez FJ; Manríquez Rocha J; Bustos E; Rodríguez A; Cruz JC; Arriaga LG; Godínez LA
    Environ Sci Technol; 2013 Jul; 47(14):7927-33. PubMed ID: 23782426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires.
    Tanthapanichakoon W; Ariyadejwanich P; Japthong P; Nakagawa K; Mukai SR; Tamon H
    Water Res; 2005 Apr; 39(7):1347-53. PubMed ID: 15862334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor.
    Zhou M; Lei L
    Chemosphere; 2006 Nov; 65(7):1197-203. PubMed ID: 16682066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor.
    Wang L; Zhao Y; Fu J
    J Hazard Mater; 2008 Dec; 160(2-3):608-13. PubMed ID: 18434001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol.
    Alvarez PM; Beltrán FJ; Gómez-Serrano V; Jaramillo J; Rodríguez EM
    Water Res; 2004 Apr; 38(8):2155-65. PubMed ID: 15087197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and catalytic oxidation of phenol in a new ozone reactor.
    Lin SH; Wang CH
    Environ Technol; 2003 Aug; 24(8):1031-9. PubMed ID: 14509395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic regeneration of exhausted activated carbon saturated with phenol.
    Liu SX; Sun CL; Zhang SR
    Bull Environ Contam Toxicol; 2004 Dec; 73(6):1017-24. PubMed ID: 15674715
    [No Abstract]   [Full Text] [Related]  

  • 14. Continuous water treatment by adsorption and electrochemical regeneration.
    Mohammed FM; Roberts EP; Hill A; Campen AK; Brown NW
    Water Res; 2011 May; 45(10):3065-74. PubMed ID: 21511325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
    Stavropoulos GG; Samaras P; Sakellaropoulos GP
    J Hazard Mater; 2008 Mar; 151(2-3):414-21. PubMed ID: 17644248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of phenol adsorption onto electro-activated carbon granules.
    Lounici H; Aioueche F; Belhocine D; Drouiche M; Pauss A; Mameri N
    Water Res; 2004 Jan; 38(1):218-24. PubMed ID: 14630120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-passivating polymeric structures in electrochemical conversion of phenol in the presence of NaCl.
    Zareie MH; Körbahti BK; Tanyolaç A
    J Hazard Mater; 2001 Oct; 87(1-3):199-212. PubMed ID: 11566410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical regeneration of activated carbon cloth exhausted with bentazone.
    Ania CO; Béguin F
    Environ Sci Technol; 2008 Jun; 42(12):4500-6. PubMed ID: 18605577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood.
    Tancredi N; Medero N; Möller F; Píriz J; Plada C; Cordero T
    J Colloid Interface Sci; 2004 Nov; 279(2):357-63. PubMed ID: 15464799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Modification of activated carbon fiber for electro-Fenton degradation of phenol].
    Ma N; Tian YJ; Yang GP; Xie XY
    Huan Jing Ke Xue; 2014 Jul; 35(7):2627-32. PubMed ID: 25244847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.