BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27376976)

  • 1. Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy.
    Gu Y; Jie W; Li L; Xu Y; Yang Y; Ren J; Zha G; Wang T; Xu L; He Y; Xi S
    Micron; 2016 Sep; 88():48-53. PubMed ID: 27376976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of poled state in P(VDF-TrFE)/(Pb,Ba)(Zr,Ti)O
    Shvartsman VV; Kiselev DA; Solnyshkin AV; Lupascu DC; Silibin MV
    Sci Rep; 2018 Jan; 8(1):378. PubMed ID: 29321656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals.
    Almadori Y; Moerman D; Martinez JL; Leclère P; Grévin B
    Beilstein J Nanotechnol; 2018; 9():1695-1704. PubMed ID: 29977703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-low Kelvin probe force spectroscopy for measuring the interface state density.
    Izumi R; Miyazaki M; Li YJ; Sugawara Y
    Beilstein J Nanotechnol; 2023; 14():175-189. PubMed ID: 36761682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the bias-dependent effects of proton-induced damage in CdZnTe radiation detectors using ion beam induced charge microscopy.
    Gu Y; Jie W; Rong C; Xu L; Xu Y; Lv H; Shen H; Du G; Guo N; Guo R; Zha G; Wang T; Xi S
    Micron; 2016 Sep; 88():54-9. PubMed ID: 27399802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on X-Ray Photocurrent Response of CdZnTe Photon Counting Detectors.
    Li Y; Zha G; Guo Y; Xi S; Xu L; Jie W
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Deep-Level Defects on the Performance of CdZnTe Photon Counting Detectors.
    Li Y; Zha G; Wei D; Yang F; Dong J; Xi S; Xu L; Jie W
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an improved Kelvin probe force microscope for accurate local potential measurements on biased electronic devices.
    Bercu NB; Giraudet L; Simonetti O; Molinari M
    J Microsc; 2017 Sep; 267(3):272-279. PubMed ID: 28394454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces.
    Tsukada M; Masago A; Shimizu M
    J Phys Condens Matter; 2012 Feb; 24(8):084002. PubMed ID: 22309993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.
    Polak L; Wijngaarden RJ
    Ultramicroscopy; 2016 Dec; 171():158-165. PubMed ID: 27690346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kelvin probe force microscopy for material characterization.
    Glatzel T; Gysin U; Meyer E
    Microscopy (Oxf); 2022 Feb; 71(Supplement_1):i165-i173. PubMed ID: 35275187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface potential modeling and reconstruction in Kelvin probe force microscopy.
    Xu J; Wu Y; Li W; Xu J
    Nanotechnology; 2017 Sep; 28(36):365705. PubMed ID: 28664875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement to the Carrier Transport Properties of CdZnTe Detector Using Sub-Band-Gap Light Radiation.
    Luo X; Zha G; Xu L; Jie W
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open loop Kelvin probe force microscopy with single and multi-frequency excitation.
    Collins L; Kilpatrick JI; Weber SA; Tselev A; Vlassiouk IV; Ivanov IN; Jesse S; Kalinin SV; Rodriguez BJ
    Nanotechnology; 2013 Nov; 24(47):475702. PubMed ID: 24176878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera.
    Abe A; Takahashi N; Lee J; Oka T; Shizukuishi K; Kikuchi T; Inoue T; Jimbo M; Ryuo H; Bickel C
    Eur J Nucl Med Mol Imaging; 2003 Jun; 30(6):805-11. PubMed ID: 12677308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical aspects of single-pass scan Kelvin probe force microscopy.
    Li G; Mao B; Lan F; Liu L
    Rev Sci Instrum; 2012 Nov; 83(11):113701. PubMed ID: 23206065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.
    Moores B; Hane F; Eng L; Leonenko Z
    Ultramicroscopy; 2010 May; 110(6):708-11. PubMed ID: 20363077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.
    Collins L; Belianinov A; Somnath S; Balke N; Kalinin SV; Jesse S
    Sci Rep; 2016 Aug; 6():30557. PubMed ID: 27514987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water.
    Kilpatrick JI; Kargin E; Rodriguez BJ
    Beilstein J Nanotechnol; 2022; 13():922-943. PubMed ID: 36161252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.