These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27377002)

  • 1. Dynamic fugacity model for accidental oil release during Arctic shipping.
    Afenyo M; Khan F; Veitch B; Yang M
    Mar Pollut Bull; 2016 Oct; 111(1-2):347-353. PubMed ID: 27377002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ecological risk assessment model for Arctic oil spills from a subsea pipeline.
    Arzaghi E; Abbassi R; Garaniya V; Binns J; Khan F
    Mar Pollut Bull; 2018 Oct; 135():1117-1127. PubMed ID: 30301010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological Risk Assessment of Oil Spills in Ice-Covered Waters: A Surface Slick Model Coupled with a Food-Web Bioaccumulation Model.
    Oliveira G; Khan F; James L
    Integr Environ Assess Manag; 2020 Sep; 16(5):729-744. PubMed ID: 32219998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic ecological risk modelling of hydrocarbon release scenarios in Arctic waters.
    Sajid Z; Khan F; Veitch B
    Mar Pollut Bull; 2020 Apr; 153():111001. PubMed ID: 32275550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling oil weathering and transport in sea ice.
    Afenyo M; Khan F; Veitch B; Yang M
    Mar Pollut Bull; 2016 Jun; 107(1):206-215. PubMed ID: 27130467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative assessment of two oil-in-ice surface drift algorithms.
    de Aguiar V; Dagestad KF; Hole LR; Barthel K
    Mar Pollut Bull; 2022 Feb; 175():113393. PubMed ID: 35131560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving oil spill trajectory modelling in the Arctic.
    Nordam T; Beegle-Krause CJ; Skancke J; Nepstad R; Reed M
    Mar Pollut Bull; 2019 Mar; 140():65-74. PubMed ID: 30803685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multiperiod Model for Assessing the Socioeconomic Impacts of Oil Spills during Arctic Shipping.
    Afenyo M; Ng AKY; Jiang C
    Risk Anal; 2022 Mar; 42(3):614-633. PubMed ID: 34232535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of marine oil spills in the Arctic with a Greenland perspective.
    Vergeynst L; Wegeberg S; Aamand J; Lassen P; Gosewinkel U; Fritt-Rasmussen J; Gustavson K; Mosbech A
    Sci Total Environ; 2018 Jun; 626():1243-1258. PubMed ID: 29898532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of climate change and seasonal trends on the fate of Arctic oil spills.
    Nordam T; Dunnebier DAE; Beegle-Krause CJ; Reed M; Slagstad D
    Ambio; 2017 Dec; 46(Suppl 3):442-452. PubMed ID: 29067639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oil dispersant on solubilization, sorption and desorption of polycyclic aromatic hydrocarbons in sediment-seawater systems.
    Zhao X; Gong Y; O'Reilly SE; Zhao D
    Mar Pollut Bull; 2015 Mar; 92(1-2):160-169. PubMed ID: 25616532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on how oil type and weathering of crude oils affect interaction with sea ice and polyethylene skimmer material.
    Øksenvåg JHC; Fossen M; Farooq U
    Mar Pollut Bull; 2019 Aug; 145():306-315. PubMed ID: 31590792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and energy consumption analysis of arctic fleet: modeling and simulation based on future motion of multi-ship.
    Xu K; Liu J; Meng H
    Environ Sci Pollut Res Int; 2024 Jun; 31(28):40352-40365. PubMed ID: 37311863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil.
    Nahrgang J; Dubourg P; Frantzen M; Storch D; Dahlke F; Meador JP
    Environ Pollut; 2016 Nov; 218():605-614. PubMed ID: 27506648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental accounting for Arctic shipping - a framework building on ship tracking data from satellites.
    Mjelde A; Martinsen K; Eide M; Endresen Ø
    Mar Pollut Bull; 2014 Oct; 87(1-2):22-28. PubMed ID: 25168183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of polycyclic aromatic hydrocarbons from the North Pacific to the Arctic: Field measurements and fugacity model simulation.
    Ke H; Chen M; Liu M; Chen M; Duan M; Huang P; Hong J; Lin Y; Cheng S; Wang X; Huang M; Cai M
    Chemosphere; 2017 Oct; 184():916-923. PubMed ID: 28651318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arctic marine fish 'biotransformation toxicity' model for ecological risk assessment.
    Fahd F; Veitch B; Khan F
    Mar Pollut Bull; 2019 May; 142():408-418. PubMed ID: 31232318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the long-term evolution of worst-case Arctic oil spills.
    Blanken H; Tremblay LB; Gaskin S; Slavin A
    Mar Pollut Bull; 2017 Mar; 116(1-2):315-331. PubMed ID: 28100401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current practices and knowledge supporting oil spill risk assessment in the Arctic.
    Wenning RJ; Robinson H; Bock M; Rempel-Hester MA; Gardiner W
    Mar Environ Res; 2018 Oct; 141():289-304. PubMed ID: 30274718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems.
    Zhao X; Liu W; Fu J; Cai Z; O'Reilly SE; Zhao D
    Mar Pollut Bull; 2016 Aug; 109(1):526-538. PubMed ID: 27318763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.