These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27377149)

  • 1. Exotic skyrmion crystals in chiral magnets with compass anisotropy.
    Chen JP; Zhang DW; Liu JM
    Sci Rep; 2016 Jul; 6():29126. PubMed ID: 27377149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions.
    Chen J; Cai WP; Qin MH; Dong S; Lu XB; Gao XS; Liu JM
    Sci Rep; 2017 Aug; 7(1):7392. PubMed ID: 28785054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Space Observations of Three-Dimensional Antiskyrmions and Skyrmion Strings.
    Yu X; Iakoubovskii KV; Yasin FS; Peng L; Nakajima K; Schneider S; Karube K; Arima T; Taguchi Y; Tokura Y
    Nano Lett; 2022 Dec; 22(23):9358-9364. PubMed ID: 36383503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bose-Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity.
    Cole WS; Zhang S; Paramekanti A; Trivedi N
    Phys Rev Lett; 2012 Aug; 109(8):085302. PubMed ID: 23002754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zoology of Multiple-Q Spin Textures in a Centrosymmetric Tetragonal Magnet with Itinerant Electrons.
    Khanh ND; Nakajima T; Hayami S; Gao S; Yamasaki Y; Sagayama H; Nakao H; Takagi R; Motome Y; Tokura Y; Arima TH; Seki S
    Adv Sci (Weinh); 2022 Apr; 9(10):e2105452. PubMed ID: 35088568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Space Observation of Topological Defects in Extended Skyrmion-Strings.
    Yu X; Masell J; Yasin FS; Karube K; Kanazawa N; Nakajima K; Nagai T; Kimoto K; Koshibae W; Taguchi Y; Nagaosa N; Tokura Y
    Nano Lett; 2020 Oct; 20(10):7313-7320. PubMed ID: 32969656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.
    Hu Y; Chi X; Li X; Liu Y; Du A
    Sci Rep; 2017 Nov; 7(1):16079. PubMed ID: 29167506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet.
    Karube K; White JS; Morikawa D; Dewhurst CD; Cubitt R; Kikkawa A; Yu X; Tokunaga Y; Arima TH; Rønnow HM; Tokura Y; Taguchi Y
    Sci Adv; 2018 Sep; 4(9):eaar7043. PubMed ID: 30225364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-space observation of a two-dimensional skyrmion crystal.
    Yu XZ; Onose Y; Kanazawa N; Park JH; Han JH; Matsui Y; Nagaosa N; Tokura Y
    Nature; 2010 Jun; 465(7300):901-4. PubMed ID: 20559382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exotic quantum spin models in spin-orbit-coupled Mott insulators.
    Radić J; Di Ciolo A; Sun K; Galitski V
    Phys Rev Lett; 2012 Aug; 109(8):085303. PubMed ID: 23002755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-temperature phase diagram of ultrathin magnetic films without external fields.
    Pighin SA; Billoni OV; Cannas SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051119. PubMed ID: 23214750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Honeycomb-Lattice Heisenberg-Kitaev Model in a Magnetic Field: Spin Canting, Metamagnetism, and Vortex Crystals.
    Janssen L; Andrade EC; Vojta M
    Phys Rev Lett; 2016 Dec; 117(27):277202. PubMed ID: 28084771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy.
    Hervé M; Dupé B; Lopes R; Böttcher M; Martins MD; Balashov T; Gerhard L; Sinova J; Wulfhekel W
    Nat Commun; 2018 Mar; 9(1):1015. PubMed ID: 29523833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable skyrmion bundles at room temperature and zero magnetic field in a chiral magnet.
    Zhang Y; Tang J; Wu Y; Shi M; Xu X; Wang S; Tian M; Du H
    Nat Commun; 2024 Apr; 15(1):3391. PubMed ID: 38649678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of the Dzyaloshinskii-Moriya interaction with Heisenberg exchange and orbital asphericity.
    Kim S; Ueda K; Go G; Jang PH; Lee KJ; Belabbes A; Manchon A; Suzuki M; Kotani Y; Nakamura T; Nakamura K; Koyama T; Chiba D; Yamada KT; Kim DH; Moriyama T; Kim KJ; Ono T
    Nat Commun; 2018 Apr; 9(1):1648. PubMed ID: 29695776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skyrmions at vanishingly small Dzyaloshinskii-Moriya interaction or zero magnetic field.
    Bera S; Mandal SS
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33848984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skyrmions and Spin Waves in Magneto-Ferroelectric Superlattices.
    Sharafullin IF; Diep HT
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meron-Mediated Phase Transitions in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy: Successive Transformation of the Hexagonal Skyrmion Lattice into the Square Lattice and into the Tilted FM State.
    Leonov AO
    Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.
    Lemesh I; Litzius K; Böttcher M; Bassirian P; Kerber N; Heinze D; Zázvorka J; Büttner F; Caretta L; Mann M; Weigand M; Finizio S; Raabe J; Im MY; Stoll H; Schütz G; Dupé B; Kläui M; Beach GSD
    Adv Mater; 2018 Dec; 30(49):e1805461. PubMed ID: 30368960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological spin crystals by itinerant frustration.
    Hayami S; Motome Y
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34343975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.