These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions. Hu Y; Chi X; Li X; Liu Y; Du A Sci Rep; 2017 Nov; 7(1):16079. PubMed ID: 29167506 [TBL] [Abstract][Full Text] [Related]
8. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Karube K; White JS; Morikawa D; Dewhurst CD; Cubitt R; Kikkawa A; Yu X; Tokunaga Y; Arima TH; Rønnow HM; Tokura Y; Taguchi Y Sci Adv; 2018 Sep; 4(9):eaar7043. PubMed ID: 30225364 [TBL] [Abstract][Full Text] [Related]
9. Real-space observation of a two-dimensional skyrmion crystal. Yu XZ; Onose Y; Kanazawa N; Park JH; Han JH; Matsui Y; Nagaosa N; Tokura Y Nature; 2010 Jun; 465(7300):901-4. PubMed ID: 20559382 [TBL] [Abstract][Full Text] [Related]
10. Exotic quantum spin models in spin-orbit-coupled Mott insulators. Radić J; Di Ciolo A; Sun K; Galitski V Phys Rev Lett; 2012 Aug; 109(8):085303. PubMed ID: 23002755 [TBL] [Abstract][Full Text] [Related]
11. Finite-temperature phase diagram of ultrathin magnetic films without external fields. Pighin SA; Billoni OV; Cannas SA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051119. PubMed ID: 23214750 [TBL] [Abstract][Full Text] [Related]
12. Honeycomb-Lattice Heisenberg-Kitaev Model in a Magnetic Field: Spin Canting, Metamagnetism, and Vortex Crystals. Janssen L; Andrade EC; Vojta M Phys Rev Lett; 2016 Dec; 117(27):277202. PubMed ID: 28084771 [TBL] [Abstract][Full Text] [Related]
13. Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy. Hervé M; Dupé B; Lopes R; Böttcher M; Martins MD; Balashov T; Gerhard L; Sinova J; Wulfhekel W Nat Commun; 2018 Mar; 9(1):1015. PubMed ID: 29523833 [TBL] [Abstract][Full Text] [Related]
14. Stable skyrmion bundles at room temperature and zero magnetic field in a chiral magnet. Zhang Y; Tang J; Wu Y; Shi M; Xu X; Wang S; Tian M; Du H Nat Commun; 2024 Apr; 15(1):3391. PubMed ID: 38649678 [TBL] [Abstract][Full Text] [Related]
15. Correlation of the Dzyaloshinskii-Moriya interaction with Heisenberg exchange and orbital asphericity. Kim S; Ueda K; Go G; Jang PH; Lee KJ; Belabbes A; Manchon A; Suzuki M; Kotani Y; Nakamura T; Nakamura K; Koyama T; Chiba D; Yamada KT; Kim DH; Moriyama T; Kim KJ; Ono T Nat Commun; 2018 Apr; 9(1):1648. PubMed ID: 29695776 [TBL] [Abstract][Full Text] [Related]
16. Skyrmions at vanishingly small Dzyaloshinskii-Moriya interaction or zero magnetic field. Bera S; Mandal SS J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33848984 [TBL] [Abstract][Full Text] [Related]
18. Meron-Mediated Phase Transitions in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy: Successive Transformation of the Hexagonal Skyrmion Lattice into the Square Lattice and into the Tilted FM State. Leonov AO Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330681 [TBL] [Abstract][Full Text] [Related]
19. Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures. Lemesh I; Litzius K; Böttcher M; Bassirian P; Kerber N; Heinze D; Zázvorka J; Büttner F; Caretta L; Mann M; Weigand M; Finizio S; Raabe J; Im MY; Stoll H; Schütz G; Dupé B; Kläui M; Beach GSD Adv Mater; 2018 Dec; 30(49):e1805461. PubMed ID: 30368960 [TBL] [Abstract][Full Text] [Related]