These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27377173)

  • 1. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture.
    Forsberg D; Horn Z; Tserga E; Smedler E; Silberberg G; Shvarev Y; Kaila K; Uhlén P; Herlenius E
    Elife; 2016 Jul; 5():. PubMed ID: 27377173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostaglandin E2 differentially modulates the central control of eupnoea, sighs and gasping in mice.
    Koch H; Caughie C; Elsen FP; Doi A; Garcia AJ; Zanella S; Ramirez JM
    J Physiol; 2015 Jan; 593(1):305-19. PubMed ID: 25556802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Il-1β and prostaglandin E2 attenuate the hypercapnic as well as the hypoxic respiratory response via prostaglandin E receptor type 3 in neonatal mice.
    Siljehav V; Shvarev Y; Herlenius E
    J Appl Physiol (1985); 2014 Nov; 117(9):1027-36. PubMed ID: 25213632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps [see comment].
    Lieske SP; Thoby-Brisson M; Telgkamp P; Ramirez JM
    Nat Neurosci; 2000 Jun; 3(6):600-7. PubMed ID: 10816317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural mechanisms for sigh generation during prenatal development.
    Thoby-Brisson M
    J Neurophysiol; 2018 Sep; 120(3):1162-1172. PubMed ID: 29897860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocytes release prostaglandin E2 to modify respiratory network activity.
    Forsberg D; Ringstedt T; Herlenius E
    Elife; 2017 Oct; 6():. PubMed ID: 28976306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocyte networks modulate respiration - sniffing glue.
    Forsberg D; Herlenius E
    Respir Physiol Neurobiol; 2019 Jul; 265():3-8. PubMed ID: 29969704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological, but not genetic, alteration of neural Epo modifies the CO
    Laouafa S; Perrin-Terrin AS; Jeton F; Elliot-Portal E; Tam R; Bodineau L; Voituron N; Soliz J
    Respir Physiol Neurobiol; 2017 Aug; 242():73-79. PubMed ID: 28396201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afferent input modulates the chronic hypercapnia-induced increase in respiratory-related central pH/CO2 chemosensitivity in the cane toad (Bufo marinus).
    Gheshmy A; Anari A; Besada D; Reid SG
    J Exp Biol; 2007 Jan; 210(Pt 2):227-37. PubMed ID: 17210960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-serine released by astrocytes in brainstem regulates breathing response to CO
    Beltrán-Castillo S; Olivares MJ; Contreras RA; Zúñiga G; Llona I; von Bernhardi R; Eugenín JL
    Nat Commun; 2017 Oct; 8(1):838. PubMed ID: 29018191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally induced return to juvenile-like chemosensitivity in the respiratory control system of adult bullfrog, Lithobates catesbeianus.
    Santin JM; Hartzler LK
    J Physiol; 2016 Nov; 594(21):6349-6367. PubMed ID: 27444338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When norepinephrine becomes a driver of breathing irregularities: how intermittent hypoxia fundamentally alters the modulatory response of the respiratory network.
    Zanella S; Doi A; Garcia AJ; Elsen F; Kirsch S; Wei AD; Ramirez JM
    J Neurosci; 2014 Jan; 34(1):36-50. PubMed ID: 24381266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo.
    Chevalier M; De Sa R; Cardoit L; Thoby-Brisson M
    Neural Plast; 2016; 2016():3905257. PubMed ID: 27239348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inspiratory and sigh breathing rhythms depend on distinct cellular signalling mechanisms in the preBötzinger complex.
    Borrus DS; Stettler MK; Grover CJ; Kalajian EJ; Gu J; Conradi Smith GD; Del Negro CA
    J Physiol; 2024 Mar; 602(5):809-834. PubMed ID: 38353596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-Bötzinger complex: Generation and modulation of respiratory rhythm.
    Muñoz-Ortiz J; Muñoz-Ortiz E; López-Meraz ML; Beltran-Parrazal L; Morgado-Valle C
    Neurologia (Engl Ed); 2019 Sep; 34(7):461-468. PubMed ID: 27443242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent control of breathing by the retrotrapezoid nucleus.
    Burke PG; Kanbar R; Basting TM; Hodges WM; Viar KE; Stornetta RL; Guyenet PG
    J Physiol; 2015 Jul; 593(13):2909-26. PubMed ID: 25820491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organotypic slice cultures containing the preBötzinger complex generate respiratory-like rhythms.
    Phillips WS; Herly M; Del Negro CA; Rekling JC
    J Neurophysiol; 2016 Feb; 115(2):1063-70. PubMed ID: 26655824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PACAP modulates the respiratory rhythm generated in the brainstem slice preparation.
    Peña F
    Adv Exp Med Biol; 2010; 669():119-22. PubMed ID: 20217333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity.
    Sheikhbahaei S; Turovsky EA; Hosford PS; Hadjihambi A; Theparambil SM; Liu B; Marina N; Teschemacher AG; Kasparov S; Smith JC; Gourine AV
    Nat Commun; 2018 Jan; 9(1):370. PubMed ID: 29371650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic excitation of preBötzinger complex neurons potently drives inspiratory activity in vivo.
    Alsahafi Z; Dickson CT; Pagliardini S
    J Physiol; 2015 Aug; 593(16):3673-92. PubMed ID: 26010654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.