These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 27377196)

  • 1. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous scalable blood filtration device using inertial microfluidics.
    Mach AJ; Di Carlo D
    Biotechnol Bioeng; 2010 Oct; 107(2):302-11. PubMed ID: 20589838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation.
    Zhang X; Zheng Z; Gu Q; He Y; Huang D; Liu Y; Mi J; Oseyemi AE
    Mikrochim Acta; 2024 Sep; 191(10):634. PubMed ID: 39347843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration.
    Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z
    Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures.
    Moloudi R; Oh S; Yang C; Teo KL; Lam AT; Ebrahimi Warkiani M; Win Naing M
    Biotechnol J; 2019 May; 14(5):e1800674. PubMed ID: 30791214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed-field separation of particles in a microfluidic device.
    Regtmeier J; Eichhorn R; Duong TT; Reimann P; Anselmetti D; Ros A
    Eur Phys J E Soft Matter; 2007 Apr; 22(4):335-40. PubMed ID: 17492395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.