BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

622 related articles for article (PubMed ID: 27377311)

  • 1. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies.
    Glassman PM; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2016 Aug; 43(4):427-46. PubMed ID: 27377311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.
    Glassman PM; Chen Y; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2015 Oct; 42(5):527-40. PubMed ID: 26364301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies.
    Cao Y; Jusko WJ
    J Pharmacokinet Pharmacodyn; 2014 Aug; 41(4):375-87. PubMed ID: 25077917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologically-based modeling to predict the clinical behavior of monoclonal antibodies directed against lymphocyte antigens.
    Glassman PM; Balthasar JP
    MAbs; 2017; 9(2):297-306. PubMed ID: 27892793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition.
    Bordeau BM; Polli JR; Schweser F; Grimm HP; Richter WF; Balthasar JP
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: comparative evaluation of prediction approaches in early drug development.
    Wang J; Iyer S; Fielder PJ; Davis JD; Deng R
    Biopharm Drug Dispos; 2016 Mar; 37(2):51-65. PubMed ID: 25869767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target-mediated drug disposition model for drugs that bind to more than one target.
    Gibiansky L; Gibiansky E
    J Pharmacokinet Pharmacodyn; 2010 Aug; 37(4):323-46. PubMed ID: 20669044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model.
    Li L; Gardner I; Dostalek M; Jamei M
    AAPS J; 2014 Sep; 16(5):1097-109. PubMed ID: 25004823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population PBPK modelling of trastuzumab: a framework for quantifying and predicting inter-individual variability.
    Malik PRV; Hamadeh A; Phipps C; Edginton AN
    J Pharmacokinet Pharmacodyn; 2017 Jun; 44(3):277-290. PubMed ID: 28260166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies.
    Dostalek M; Gardner I; Gurbaxani BM; Rose RH; Chetty M
    Clin Pharmacokinet; 2013 Feb; 52(2):83-124. PubMed ID: 23299465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A translational platform PBPK model for antibody disposition in the brain.
    Chang HY; Wu S; Meno-Tetang G; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):319-338. PubMed ID: 31115858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.
    Gibiansky L; Gibiansky E
    J Pharmacokinet Pharmacodyn; 2017 Oct; 44(5):463-475. PubMed ID: 28725976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
    Shah DK; Betts AM
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling.
    Hu S; D'Argenio DZ
    J Pharmacokinet Pharmacodyn; 2020 Oct; 47(5):385-409. PubMed ID: 32500362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development.
    Glassman PM; Balthasar JP
    Drug Metab Pharmacokinet; 2019 Feb; 34(1):3-13. PubMed ID: 30522890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a catenary PBPK model to predict the disposition of "catch and release" anti-PCSK9 antibodies.
    Glassman PM; Balthasar JP
    Int J Pharm; 2016 May; 505(1-2):69-78. PubMed ID: 27041125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of quantitative protein mass spectrometric data in the early predictive analysis of membrane-bound target engagement by monoclonal antibodies.
    Sepp A; Muliaditan M
    MAbs; 2024; 16(1):2324485. PubMed ID: 38700511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MPBPK-TMDD models for mAbs: alternative models, comparison, and identifiability issues.
    Lavezzi SM; Mezzalana E; Zamuner S; De Nicolao G; Ma P; Simeoni M
    J Pharmacokinet Pharmacodyn; 2018 Dec; 45(6):787-802. PubMed ID: 30415351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach.
    Betts A; Keunecke A; van Steeg TJ; van der Graaf PH; Avery LB; Jones H; Berkhout J
    MAbs; 2018 Jul; 10(5):751-764. PubMed ID: 29634430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of population physiologically based pharmacokinetic modelling to optimize target expression and clearance mechanisms of therapeutic monoclonal antibodies.
    Reig-Lopez J; Tang W; Fernandez-Teruel C; Merino-Sanjuan M; Mangas-Sanjuan V; Boulton DW; Sharma P
    Br J Clin Pharmacol; 2023 Sep; 89(9):2691-2702. PubMed ID: 37055941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.