BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 27377354)

  • 1. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced surface adsorption in 3D printed acrylonitrile butadiene styrene micro free-flow electrophoresis devices.
    Anciaux SK; Bowser MT
    Electrophoresis; 2020 Feb; 41(3-4):225-234. PubMed ID: 31816114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturized free-flow electrophoresis: production, optimization, and application using 3D printing technology.
    Preuss JA; Nguyen GN; Berk V; Bahnemann J
    Electrophoresis; 2021 Feb; 42(3):305-314. PubMed ID: 33128392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of µFFE Devices in COC via Hot Embossing with a 3D-Printed Master Mold.
    LeMon MB; Douma CC; Burke GS; Bowser MT
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a Micro Free-Flow Electrophoresis 3D Printed Lab-on-a-Chip for Micro-Nanoparticles Analysis.
    Barbaresco F; Cocuzza M; Pirri CF; Marasso SL
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32629794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Surface Adsorption on Temporal and Spatial Broadening in Micro Free Flow Electrophoresis.
    Geiger M; Harstad RK; Bowser MT
    Anal Chem; 2015 Dec; 87(23):11682-90. PubMed ID: 26496470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins.
    Dong YC; Shao J; Yin XY; Fan LY; Cao CX
    J Sep Sci; 2011 Jul; 34(14):1683-91. PubMed ID: 21695687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [3D printed portable gel electrophoresis device for rapid detection of proteins].
    Li Y; Wang D; Nong Q; Liu L; Zhang M; Liang Y; Hu L; He B; Jiang G
    Se Pu; 2020 Nov; 38(11):1316-1322. PubMed ID: 34213103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers.
    Beauchamp MJ; Nielsen AV; Gong H; Nordin GP; Woolley AT
    Anal Chem; 2019 Jun; 91(11):7418-7425. PubMed ID: 31056901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol.
    Katseli V; Economou A; Kokkinos C
    Talanta; 2020 Feb; 208():120388. PubMed ID: 31816700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of electrolyte concentration on nanofractures fabricated in a 3D-printed microfluidic device by controlled dielectric breakdown.
    Islam MF; Yap YC; Li F; Guijt RM; Breadmore MC
    Electrophoresis; 2020 Dec; 41(23):2007-2014. PubMed ID: 32776330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Fabrication of Nanocomplexes Using 3D-Printed Micromixers.
    Bohr A; Boetker J; Wang Y; Jensen H; Rantanen J; Beck-Broichsitter M
    J Pharm Sci; 2017 Mar; 106(3):835-842. PubMed ID: 27938892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.