BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27377381)

  • 1. Structural basis for acyl-group discrimination by human Gcn5L2.
    Ringel AE; Wolberger C
    Acta Crystallogr D Struct Biol; 2016 Jul; 72(Pt 7):841-8. PubMed ID: 27377381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues.
    Maksimoska J; Segura-Peña D; Cole PA; Marmorstein R
    Biochemistry; 2014 Jun; 53(21):3415-22. PubMed ID: 24819397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis by protein acetyltransferase Gcn5.
    Albaugh BN; Denu JM
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194627. PubMed ID: 32841743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of p300 in complex with acyl-CoA variants.
    Kaczmarska Z; Ortega E; Goudarzi A; Huang H; Kim S; Márquez JA; Zhao Y; Khochbin S; Panne D
    Nat Chem Biol; 2017 Jan; 13(1):21-29. PubMed ID: 27820805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator.
    Liu X; Wang L; Zhao K; Thompson PR; Hwang Y; Marmorstein R; Cole PA
    Nature; 2008 Feb; 451(7180):846-50. PubMed ID: 18273021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation.
    Liszczak G; Arnesen T; Marmorstein R
    J Biol Chem; 2011 Oct; 286(42):37002-10. PubMed ID: 21900231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation.
    Trefely S; Lovell CD; Snyder NW; Wellen KE
    Mol Metab; 2020 Aug; 38():100941. PubMed ID: 32199817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling Cellular Substrates of Lysine Acetyltransferases GCN5 and p300 with Orthogonal Labeling and Click Chemistry.
    Han Z; Chou CW; Yang X; Bartlett MG; Zheng YG
    ACS Chem Biol; 2017 Jun; 12(6):1547-1555. PubMed ID: 28426192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of human isovaleryl-CoA dehydrogenase at 2.6 A resolution: structural basis for substrate specificity,
    Tiffany KA; Roberts DL; Wang M; Paschke R; Mohsen AW; Vockley J; Kim JJ
    Biochemistry; 1997 Jul; 36(28):8455-64. PubMed ID: 9214289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures and mutational analyses of acyl-CoA carboxylase beta subunit of Streptomyces coelicolor.
    Arabolaza A; Shillito ME; Lin TW; Diacovich L; Melgar M; Pham H; Amick D; Gramajo H; Tsai SC
    Biochemistry; 2010 Aug; 49(34):7367-76. PubMed ID: 20690600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels.
    Carrer A; Parris JLD; Trefely S; Henry RA; Montgomery DC; Torres A; Viola JM; Kuo YM; Blair IA; Meier JL; Andrews AJ; Snyder NW; Wellen KE
    J Biol Chem; 2017 Feb; 292(8):3312-3322. PubMed ID: 28077572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Basis of KAT2A Selecting Acyl-CoA Cofactors for Histone Modifications.
    Li S; Li N; He J; Zhou R; Lu Z; Tao YJ; Guo YR; Wang Y
    Research (Wash D C); 2023; 6():0109. PubMed ID: 37040526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours.
    Lasko LM; Jakob CG; Edalji RP; Qiu W; Montgomery D; Digiammarino EL; Hansen TM; Risi RM; Frey R; Manaves V; Shaw B; Algire M; Hessler P; Lam LT; Uziel T; Faivre E; Ferguson D; Buchanan FG; Martin RL; Torrent M; Chiang GG; Karukurichi K; Langston JW; Weinert BT; Choudhary C; de Vries P; Van Drie JH; McElligott D; Kesicki E; Marmorstein R; Sun C; Cole PA; Rosenberg SH; Michaelides MR; Lai A; Bromberg KD
    Nature; 2017 Oct; 550(7674):128-132. PubMed ID: 28953875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor.
    Trievel RC; Li FY; Marmorstein R
    Anal Biochem; 2000 Dec; 287(2):319-28. PubMed ID: 11112280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetyl-CoA synthetase (ACSS2) does not generate butyryl- and crotonyl-CoA.
    Zeaiter N; Belot L; Cunin V; Nahed RA; Tokarska-Schlattner M; Le Gouellec A; Petosa C; Khochbin S; Schlattner U
    Mol Metab; 2024 Mar; 81():101903. PubMed ID: 38369012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase.
    Wang Y; Guo YR; Liu K; Yin Z; Liu R; Xia Y; Tan L; Yang P; Lee JH; Li XJ; Hawke D; Zheng Y; Qian X; Lyu J; He J; Xing D; Tao YJ; Lu Z
    Nature; 2017 Dec; 552(7684):273-277. PubMed ID: 29211711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the acetylation mechanism by GCN5 histone acetyltransferase.
    Jiang J; Lu J; Lu D; Liang Z; Li L; Ouyang S; Kong X; Jiang H; Shen B; Luo C
    PLoS One; 2012; 7(5):e36660. PubMed ID: 22574209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for Substrate Specificity in Adenosylcobalamin-dependent Isobutyryl-CoA Mutase and Related Acyl-CoA Mutases.
    Jost M; Born DA; Cracan V; Banerjee R; Drennan CL
    J Biol Chem; 2015 Nov; 290(45):26882-26898. PubMed ID: 26318610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of bovine kidney pyruvate dehydrogenase kinase activity by CoA esters and their mechanism of action.
    Rahmatullah M; Roche TE
    J Biol Chem; 1985 Aug; 260(18):10146-52. PubMed ID: 4019505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5'-propylphosphate and coenzyme A.
    Gulick AM; Starai VJ; Horswill AR; Homick KM; Escalante-Semerena JC
    Biochemistry; 2003 Mar; 42(10):2866-73. PubMed ID: 12627952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.