These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27377397)
1. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master. Lobo-Júnior EO; Gabriel EF; Dos Santos RA; de Souza FR; Lopes WD; Lima RS; Gobbi AL; Coltro WK Electrophoresis; 2017 Jan; 38(2):250-257. PubMed ID: 27377397 [TBL] [Abstract][Full Text] [Related]
2. Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Vázquez M; Frankenfeld C; Coltro WK; Carrilho E; Diamond D; Lunte SM Analyst; 2010 Jan; 135(1):96-103. PubMed ID: 20024187 [TBL] [Abstract][Full Text] [Related]
3. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations. Qu S; Chen X; Chen D; Yang P; Chen G Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260 [TBL] [Abstract][Full Text] [Related]
4. A simplified poly(dimethylsiloxane) capillary electrophoresis microchip integrated with a low-noise contactless conductivity detector. Liu B; Zhang Y; Mayer D; Krause HJ; Jin Q; Zhao J; Offenhäusser A Electrophoresis; 2011 Mar; 32(6-7):699-704. PubMed ID: 21341289 [TBL] [Abstract][Full Text] [Related]
5. Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity. Lucca BG; Lunte SM; Tomazelli Coltro WK; Ferreira VS Electrophoresis; 2014 Dec; 35(23):3363-70. PubMed ID: 25224541 [TBL] [Abstract][Full Text] [Related]
6. Bulk modification of PDMS microchips by an amphiphilic copolymer. Xiao Y; Yu XD; Xu JJ; Chen HY Electrophoresis; 2007 Sep; 28(18):3302-7. PubMed ID: 17854125 [TBL] [Abstract][Full Text] [Related]
7. Rapid and inexpensive method for the simple fabrication of PDMS-based electrochemical sensors for detection in microfluidic devices. da Silva ENT; Ferreira VS; Lucca BG Electrophoresis; 2019 May; 40(9):1322-1330. PubMed ID: 30657598 [TBL] [Abstract][Full Text] [Related]
8. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices. Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838 [TBL] [Abstract][Full Text] [Related]
9. Application of capacitively coupled contactless conductivity as an external detector for zone electrophoresis in poly(dimethylsiloxane) chips. Koczka PI; Bodoki E; Gáspár A Electrophoresis; 2016 Feb; 37(3):398-405. PubMed ID: 26531885 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner. Coltro WK; Lunte SM; Carrilho E Electrophoresis; 2008 Dec; 29(24):4928-37. PubMed ID: 19025869 [TBL] [Abstract][Full Text] [Related]
11. Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Chagas CL; Costa Duarte L; Lobo-Júnior EO; Piccin E; Dossi N; Coltro WK Electrophoresis; 2015 Aug; 36(16):1837-44. PubMed ID: 25929980 [TBL] [Abstract][Full Text] [Related]
12. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis. Liang R; Hu P; Gan G; Qiu J Talanta; 2009 Mar; 77(5):1647-53. PubMed ID: 19159778 [TBL] [Abstract][Full Text] [Related]
13. Micro-molding for poly(dimethylsiloxane) microchips. García CD; Henry CS Methods Mol Biol; 2006; 339():27-36. PubMed ID: 16790864 [TBL] [Abstract][Full Text] [Related]
14. Inexpensive and nonconventional fabrication of microfluidic devices in PMMA based on a soft-embossing protocol. Lobo-Júnior EO; Chagas CLS; Duarte LC; Cardoso TMG; de Souza FR; Lima RS; Coltro WKT Electrophoresis; 2020 Oct; 41(18-19):1641-1650. PubMed ID: 32726462 [TBL] [Abstract][Full Text] [Related]
15. Metalless electrodes for capacitively coupled contactless conductivity detection on electrophoresis microchips. Duarte Junior GF; Fracassi da Silva JA; Mendonça Francisco KJ; do Lago CL; Carrilho E; Coltro WK Electrophoresis; 2015 Aug; 36(16):1935-40. PubMed ID: 25809443 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a capacitance-coupled contactless conductivity detection system with sidewall electrodes on a low-voltage-driven electrophoresis microchip. Xu Y; Liang J; Liu H; Hu X; Wen Z; Wu Y; Cao M Anal Bioanal Chem; 2010 Jun; 397(4):1583-93. PubMed ID: 20386887 [TBL] [Abstract][Full Text] [Related]
17. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for μTAS applications. de Campos RP; Yoshida IV; da Silva JA Electrophoresis; 2014 Aug; 35(16):2346-52. PubMed ID: 24723304 [TBL] [Abstract][Full Text] [Related]
18. High intensity light emitting diode array as an alternative exposure source for the fabrication of electrophoretic microfluidic devices. Breadmore MC; Guijt RM J Chromatogr A; 2008 Dec; 1213(1):3-7. PubMed ID: 18930463 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips. Coltro WK; da Silva JA; Carrilho E Electrophoresis; 2008 Jun; 29(11):2260-5. PubMed ID: 18446805 [TBL] [Abstract][Full Text] [Related]
20. Rapid prototyping of polydimethylsiloxane (PDMS) microchips using electrohydrodynamic jet printing: Application to electrokinetic assays. Choubey A; Dubey K; Bahga SS Electrophoresis; 2023 Apr; 44(7-8):725-732. PubMed ID: 36774545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]