These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27377880)

  • 21. Intermittent locomotion of a fish-like swimmer driven by passive elastic mechanism.
    Dai L; He G; Zhang X; Zhang X
    Bioinspir Biomim; 2018 Jul; 13(5):056011. PubMed ID: 30019691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A resonant squid-inspired robot unlocks biological propulsive efficiency.
    Bujard T; Giorgio-Serchi F; Weymouth GD
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational modeling of swimming in marine invertebrates with implications for soft swimming robots.
    Zhou Z; Mittal R
    Bioinspir Biomim; 2020 Jun; 15(4):046010. PubMed ID: 32320957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Propulsive performance of a body with a traveling-wave surface.
    Tian FB; Lu XY; Luo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016304. PubMed ID: 23005522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rolling and pitching oscillating foil propulsion in ground effect.
    Perkins M; Elles D; Badlissi G; Mivehchi A; Dahl J; Licht S
    Bioinspir Biomim; 2017 Nov; 13(1):016003. PubMed ID: 28869422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry.
    Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic shark skin: design, fabrication and hydrodynamic function.
    Wen L; Weaver JC; Lauder GV
    J Exp Biol; 2014 May; 217(Pt 10):1656-66. PubMed ID: 24829323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamic advantages of in-line schooling.
    Saadat M; Berlinger F; Sheshmani A; Nagpal R; Lauder GV; Haj-Hariri H
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33513591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions.
    Ware C; Trites AW; Rosen DA; Potvin J
    PLoS One; 2016; 11(6):e0157326. PubMed ID: 27285467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unsteady computational fluid dynamics in front crawl swimming.
    Samson M; Bernard A; Monnet T; Lacouture P; David L
    Comput Methods Biomech Biomed Engin; 2017 May; 20(7):783-793. PubMed ID: 28332407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics of a squid-inspired swimmer in free swimming.
    Bi X; Zhu Q
    Bioinspir Biomim; 2019 Dec; 15(1):016005. PubMed ID: 31726438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible propulsors in ground effect.
    Quinn DB; Lauder GV; Smits AJ
    Bioinspir Biomim; 2014 Sep; 9(3):036008. PubMed ID: 24667542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The hydrodynamics of eel swimming II. Effect of swimming speed.
    Tytell ED
    J Exp Biol; 2004 Sep; 207(Pt 19):3265-79. PubMed ID: 15326203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.