These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27378006)

  • 1. Design principles for the analysis and construction of robustly homeostatic biological networks.
    Tang ZF; McMillen DR
    J Theor Biol; 2016 Nov; 408():274-289. PubMed ID: 27378006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect adaptation in biology.
    Khammash MH
    Cell Syst; 2021 Jun; 12(6):509-521. PubMed ID: 34139163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying adaptation and homeostatic behaviors of kinetic networks by using MATLAB.
    Drengstig T; Kjosmoen T; Ruoff P
    Methods Mol Biol; 2011; 734():153-72. PubMed ID: 21468989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Principles for Perfect Adaptation in Biological Networks with Nonlinear Dynamics.
    Bhattacharya P; Raman K; Tangirala AK
    Bull Math Biol; 2024 Jul; 86(8):100. PubMed ID: 38958824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.
    Ni XY; Drengstig T; Ruoff P
    Biophys J; 2009 Sep; 97(5):1244-53. PubMed ID: 19720012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal biomolecular integral feedback controller for robust perfect adaptation.
    Aoki SK; Lillacci G; Gupta A; Baumschlager A; Schweingruber D; Khammash M
    Nature; 2019 Jun; 570(7762):533-537. PubMed ID: 31217585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal structural requirements for maximal robust perfect adaptation in biomolecular networks.
    Gupta A; Khammash M
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2207802119. PubMed ID: 36256812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeostasis in networks with multiple inputs.
    de Oliveira Madeira JL; Antoneli F
    J Math Biol; 2024 Jun; 89(2):17. PubMed ID: 38902549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of antithetic control via molecular buffering.
    Hancock EJ; Oyarzún DA
    J R Soc Interface; 2022 Mar; 19(188):20210762. PubMed ID: 35259958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks.
    Briat C; Gupta A; Khammash M
    Cell Syst; 2016 Jan; 2(1):15-26. PubMed ID: 27136686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach to homeostatic regulation: towards a unified view of physiological and ecological concepts.
    Meunier CL; Malzahn AM; Boersma M
    PLoS One; 2014; 9(9):e107737. PubMed ID: 25247989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust concentration and frequency control in oscillatory homeostats.
    Thorsen K; Agafonov O; Selstø CH; Jolma IW; Ni XY; Drengstig T; Ruoff P
    PLoS One; 2014; 9(9):e107766. PubMed ID: 25238410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining network topologies that can achieve biochemical adaptation.
    Ma W; Trusina A; El-Samad H; Lim WA; Tang C
    Cell; 2009 Aug; 138(4):760-73. PubMed ID: 19703401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Homeostatic Mechanisms in Biochemical Networks.
    Reed M; Best J; Golubitsky M; Stewart I; Nijhout HF
    Bull Math Biol; 2017 Nov; 79(11):2534-2557. PubMed ID: 28884446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Metabolic Regulation at a Systems Level: Metabolite Sensing, Mathematical Predictions, and Model Organisms.
    Watson E; Yilmaz LS; Walhout AJ
    Annu Rev Genet; 2015; 49():553-75. PubMed ID: 26631516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of Neuronal Networks with Homeostatic Regulation.
    Harnack D; Pelko M; Chaillet A; Chitour Y; van Rossum MC
    PLoS Comput Biol; 2015 Jul; 11(7):e1004357. PubMed ID: 26154297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding Robust Adaptation Gene Regulatory Networks Using Multi-Objective Genetic Algorithm.
    Ren HP; Huang XN; Hao JX
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):571-7. PubMed ID: 27295641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust network topologies for generating switch-like cellular responses.
    Shah NA; Sarkar CA
    PLoS Comput Biol; 2011 Jun; 7(6):e1002085. PubMed ID: 21731481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network Topologies That Can Achieve Dual Function of Adaptation and Noise Attenuation.
    Qiao L; Zhao W; Tang C; Nie Q; Zhang L
    Cell Syst; 2019 Sep; 9(3):271-285.e7. PubMed ID: 31542414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
    Smith RW; van Sluijs B; Fleck C
    BMC Syst Biol; 2017 Dec; 11(1):118. PubMed ID: 29197394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.