These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27378165)

  • 1. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition.
    Park SJ; Zhao H; Kim S; De Volder M; John Hart A
    Small; 2016 Aug; 12(32):4393-403. PubMed ID: 27378165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-engineered manufacturing of freeform carbon nanotube microstructures.
    De Volder M; Park S; Tawfick S; Hart AJ
    Nat Commun; 2014 Jul; 5():4512. PubMed ID: 25072599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of capillary forming of aligned carbon nanotube assemblies.
    Tawfick S; Zhao Z; Maschmann M; Brieland-Shoultz A; De Volder M; Baur JW; Lu W; Hart AJ
    Langmuir; 2013 Apr; 29(17):5190-8. PubMed ID: 23537107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
    Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis.
    Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth.
    Bedewy M; Farmer B; Hart AJ
    ACS Nano; 2014 Jun; 8(6):5799-812. PubMed ID: 24794192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delamination Mechanics of Carbon Nanotube Micropillars.
    Brown J; Hajilounezhad T; Dee NT; Kim S; Hart AJ; Maschmann MR
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35221-35227. PubMed ID: 31478639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth.
    Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ
    ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of CMOS Microstructures to Locally Synthesize Carbon Nanotubes for Gas Sensing.
    Roy A; Azadmehr M; Ta BQ; Häfliger P; Aasmundtveit KE
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable synthesis of spongy carbon nanotube blocks with tunable macro- and microstructures.
    Gui X; Lin Z; Zeng Z; Wang K; Wu D; Tang Z
    Nanotechnology; 2013 Mar; 24(8):085705. PubMed ID: 23377139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth.
    Bedewy M; Hart AJ
    Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength.
    Qin J; Wang C; Wang Y; Lu R; Zheng L; Wang X; Yao Z; Gao Q; Wei H
    Nanotechnology; 2018 Sep; 29(39):395602. PubMed ID: 29972379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocomposite microstructures with tunable mechanical and chemical properties.
    Tawfick S; Deng X; Hart AJ; Lahann J
    Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.
    Zhong XH; Li YL; Feng JM; Kang YR; Han SS
    Nanoscale; 2012 Sep; 4(18):5614-8. PubMed ID: 22864939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes.
    Sojoudi H; Kim S; Zhao H; Annavarapu RK; Mariappan D; Hart AJ; McKinley GH; Gleason KK
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43287-43299. PubMed ID: 29131948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of high-aspect-ratio polymer microstructures and hierarchical textures using carbon nanotube composite master molds.
    Copic D; Park SJ; Tawfick S; De Volder MF; Hart AJ
    Lab Chip; 2011 May; 11(10):1831-7. PubMed ID: 21451817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of material constants of vertically aligned carbon nanotube structures in compressions.
    Li Y; Kang J; Choi JB; Nam JD; Suhr J
    Nanotechnology; 2015 Jun; 26(24):245701. PubMed ID: 26011574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth.
    Polsen ES; Stevens AG; Hart AJ
    ACS Appl Mater Interfaces; 2013 May; 5(9):3656-62. PubMed ID: 23438258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.