These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27378399)

  • 1. Standalone ethanol micro-reformer integrated on silicon technology for onboard production of hydrogen-rich gas.
    Pla D; Salleras M; Morata A; Garbayo I; Gerbolés M; Sabaté N; Divins NJ; Casanovas A; Llorca J; Tarancón A
    Lab Chip; 2016 Aug; 16(15):2900-10. PubMed ID: 27378399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.
    Lee CY; Lee SJ; Shen CC; Yeh CT; Chang CC; Lo YM
    Sensors (Basel); 2011; 11(2):2246-56. PubMed ID: 22319407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a flexible micro CO sensor for micro reformer applications.
    Lee CY; Chang CC; Lo YM
    Sensors (Basel); 2010; 10(12):10701-13. PubMed ID: 22163494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syngas generation from n-butane with an integrated MEMS assembly for gas processing in micro-solid oxide fuel cell systems.
    Bieberle-Hütter A; Santis-Alvarez AJ; Jiang B; Heeb P; Maeder T; Nabavi M; Poulikakos D; Niedermann P; Dommann A; Muralt P; Bernard A; Gauckler LJ
    Lab Chip; 2012 Nov; 12(22):4894-902. PubMed ID: 23044760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a flexible micro temperature sensor for micro reformer applications.
    Lee CY; Lin CH; Lo YM
    Sensors (Basel); 2011; 11(4):3706-16. PubMed ID: 22163817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
    Zhang S; Zhang Y; Chen J; Zhang X; Liu X
    PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Swiss-Roll-Type Methanol Mini-Steam Reformer for Hydrogen Generation with High Efficiency and Long-Term Durability.
    Tseng FG; Chiu WC; Huang PJ
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steam reforming of biodiesel by-product to make renewable hydrogen.
    Slinn M; Kendall K; Mallon C; Andrews J
    Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability.
    Baek JD; Yu CC; Su PC
    Nano Lett; 2016 Apr; 16(4):2413-7. PubMed ID: 26990604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-power-Consumption metal oxide NO2 gas sensor based on micro-heater and screen printing technology.
    Moon SE; Lee HK; Choi NJ; Lee J; Yang WS; Kim J; Jong JJ; Yoo DJ
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5543-6. PubMed ID: 22966607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane.
    Christian MM; Kenis PJ
    Lab Chip; 2006 Oct; 6(10):1328-37. PubMed ID: 17111577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis in high-temperature fuel cells.
    Föger K; Ahmed K
    J Phys Chem B; 2005 Feb; 109(6):2149-54. PubMed ID: 16851206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability.
    Kim KJ; Park BH; Kim SJ; Lee Y; Bae H; Choi GM
    Sci Rep; 2016 Mar; 6():22443. PubMed ID: 26928921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermochemical Performance Analysis of the Steam Reforming of Methane in a Fixed Bed Membrane Reformer: A Modelling and Simulation Study.
    de Medeiros JPF; da Fonseca Dias V; da Silva JM; da Silva JD
    Membranes (Basel); 2020 Dec; 11(1):. PubMed ID: 33374497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mask-less deposition of Au-SnO2 nanocomposites on CMOS MEMS platform for ethanol detection.
    Santra S; Sinha AK; De Luca A; Ali SZ; Udrea F; Guha PK; Ray SK; Gardner JW
    Nanotechnology; 2016 Mar; 27(12):125502. PubMed ID: 26890414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel reforming method for hydrogen production from biomass steam gasification.
    Gao N; Li A; Quan C
    Bioresour Technol; 2009 Sep; 100(18):4271-7. PubMed ID: 19395255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, optimization and application of reformer in a marine natural gas engine: A numerical and experimental study.
    Huang Y; Zhang Z; Zhang Y; Wei W; Zhou L; Li G; Xu W; Zheng Y; Song W
    Sci Total Environ; 2023 Sep; 892():164542. PubMed ID: 37271386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst.
    Wu C; Williams PT
    Environ Technol; 2012; 33(4-6):631-8. PubMed ID: 22629637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.