BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27378496)

  • 1. Engineering E. coli for large-scale production - Strategies considering ATP expenses and transcriptional responses.
    Löffler M; Simen JD; Jäger G; Schäferhoff K; Freund A; Takors R
    Metab Eng; 2016 Nov; 38():73-85. PubMed ID: 27378496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven in silico prediction of regulation heterogeneity and ATP demands of Escherichia coli in large-scale bioreactors.
    Zieringer J; Wild M; Takors R
    Biotechnol Bioeng; 2021 Jan; 118(1):265-278. PubMed ID: 32940924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional response of Escherichia coli to ammonia and glucose fluctuations.
    Simen JD; Löffler M; Jäger G; Schäferhoff K; Freund A; Matthes J; Müller J; Takors R;
    Microb Biotechnol; 2017 Jul; 10(4):858-872. PubMed ID: 28447391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose.
    Wu Y; Sun X; Lin Y; Shen X; Yang Y; Jain R; Yuan Q; Yan Y
    Metab Eng; 2017 Jan; 39():1-8. PubMed ID: 27818152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli HGT: Engineered for high glucose throughput even under slowly growing or resting conditions.
    Michalowski A; Siemann-Herzberg M; Takors R
    Metab Eng; 2017 Mar; 40():93-103. PubMed ID: 28110078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular co-culture engineering, a new approach for metabolic engineering.
    Zhang H; Wang X
    Metab Eng; 2016 Sep; 37():114-121. PubMed ID: 27242132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance.
    Liang K; Shen CR
    Metab Eng; 2017 Jan; 39():181-191. PubMed ID: 27931827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Escherichia coli to produce branched-chain fatty acids in high percentages.
    Bentley GJ; Jiang W; Guamán LP; Xiao Y; Zhang F
    Metab Eng; 2016 Nov; 38():148-158. PubMed ID: 27421620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli metabolism under short-term repetitive substrate dynamics: adaptation and trade-offs.
    Vasilakou E; van Loosdrecht MCM; Wahl SA
    Microb Cell Fact; 2020 May; 19(1):116. PubMed ID: 32471427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal tracers for parallel labeling experiments and
    Crown SB; Long CP; Antoniewicz MR
    Metab Eng; 2016 Nov; 38():10-18. PubMed ID: 27267409
    [No Abstract]   [Full Text] [Related]  

  • 14. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
    Whitaker WB; Jones JA; Bennett RK; Gonzalez JE; Vernacchio VR; Collins SM; Palmer MA; Schmidt S; Antoniewicz MR; Koffas MA; Papoutsakis ET
    Metab Eng; 2017 Jan; 39():49-59. PubMed ID: 27815193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.
    Long CP; Gonzalez JE; Sandoval NR; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():102-113. PubMed ID: 27212692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli.
    Ning Y; Wu X; Zhang C; Xu Q; Chen N; Xie X
    Metab Eng; 2016 Jul; 36():10-18. PubMed ID: 26969253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.
    Gupta A; Reizman IM; Reisch CR; Prather KL
    Nat Biotechnol; 2017 Mar; 35(3):273-279. PubMed ID: 28191902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.
    Shen CR; Liao JC
    Metab Eng; 2013 May; 17():12-22. PubMed ID: 23376654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis.
    Shen HJ; Cheng BY; Zhang YM; Tang L; Li Z; Bu YF; Li XR; Tian GQ; Liu JZ
    Metab Eng; 2016 Nov; 38():180-190. PubMed ID: 27474352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.