These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27378496)

  • 21. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.
    Rodriguez A; Martínez JA; Millard P; Gosset G; Portais JC; Létisse F; Bolivar F
    Biotechnol Bioeng; 2017 Jun; 114(6):1319-1330. PubMed ID: 28186321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli.
    Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL
    J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols.
    Chen Z; Sun X; Li Y; Yan Y; Yuan Q
    Metab Eng; 2017 Jan; 39():102-109. PubMed ID: 27816771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions.
    He L; Xiu Y; Jones JA; Baidoo EEK; Keasling JD; Tang YJ; Koffas MAG
    Metab Eng; 2017 Jan; 39():247-256. PubMed ID: 28017690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.
    Tan GY; Liu T
    Metab Eng; 2017 Jan; 39():228-236. PubMed ID: 28013086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotin-independent strains of Escherichia coli for enhanced streptavidin production.
    Jeschek M; Bahls MO; Schneider V; Marlière P; Ward TR; Panke S
    Metab Eng; 2017 Mar; 40():33-40. PubMed ID: 28062280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulation of the ATP pool as a tool for metabolic engineering.
    Hädicke O; Klamt S
    Biochem Soc Trans; 2015 Dec; 43(6):1140-5. PubMed ID: 26614651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.
    Choi S; Kim HU; Kim TY; Lee SY
    Metab Eng; 2016 Nov; 38():264-273. PubMed ID: 27663752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An ancient Chinese wisdom for metabolic engineering: Yin-Yang.
    Wu SG; He L; Wang Q; Tang YJ
    Microb Cell Fact; 2015 Mar; 14():39. PubMed ID: 25889067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C; Gao X; Jiang Y; Sun B; Gao F; Yang S
    Metab Eng; 2016 Sep; 37():79-91. PubMed ID: 27174717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergy between (13)C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli.
    Chen X; Alonso AP; Allen DK; Reed JL; Shachar-Hill Y
    Metab Eng; 2011 Jan; 13(1):38-48. PubMed ID: 21129495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of citramalate by metabolically engineered Escherichia coli.
    Wu X; Eiteman MA
    Biotechnol Bioeng; 2016 Dec; 113(12):2670-2675. PubMed ID: 27316562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering central metabolic modules of Escherichia coli for improving β-carotene production.
    Zhao J; Li Q; Sun T; Zhu X; Xu H; Tang J; Zhang X; Ma Y
    Metab Eng; 2013 May; 17():42-50. PubMed ID: 23500001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering the Escherichia coli fermentative metabolism.
    Orencio-Trejo M; Utrilla J; Fernández-Sandoval MT; Huerta-Beristain G; Gosset G; Martinez A
    Adv Biochem Eng Biotechnol; 2010; 121():71-107. PubMed ID: 20182928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations.
    Li J; Jaitzig J; Lu P; Süssmuth RD; Neubauer P
    Microb Cell Fact; 2015 Jun; 14():83. PubMed ID: 26063334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli.
    de Arroyo Garcia L; Jones PR
    PLoS Comput Biol; 2020 Aug; 16(8):e1008125. PubMed ID: 32776925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.
    Noda S; Mori Y; Oyama S; Kondo A; Araki M; Shirai T
    Microb Cell Fact; 2019 Jul; 18(1):124. PubMed ID: 31319852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering.
    Tyagi N; Saini D; Guleria R; Mukherjee KJ
    Mol Biotechnol; 2017 May; 59(4-5):168-178. PubMed ID: 28374116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.