BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 27378567)

  • 21. Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide.
    Nalli AD; Bhattacharya S; Wang H; Kendig DM; Grider JR; Murthy KS
    Am J Physiol Gastrointest Liver Physiol; 2017 Oct; 313(4):G330-G341. PubMed ID: 28705807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fibrate gemfibrozil is a NO- and haem-independent activator of soluble guanylyl cyclase: in vitro studies.
    Sharina IG; Sobolevsky M; Papakyriakou A; Rukoyatkina N; Spyroulias GA; Gambaryan S; Martin E
    Br J Pharmacol; 2015 May; 172(9):2316-29. PubMed ID: 25536881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heme oxygenase-1 deficiency leads to alteration of soluble guanylate cyclase redox regulation.
    Jones AW; Durante W; Korthuis RJ
    J Pharmacol Exp Ther; 2010 Oct; 335(1):85-91. PubMed ID: 20605906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronological Change of Vascular Reactivity to cGMP Generators in the Balloon-Injured Rat Carotid Artery.
    Tawa M; Shimosato T; Sakonjo H; Masuoka T; Nishio M; Ishibashi T; Okamura T
    J Vasc Res; 2019; 56(3):109-116. PubMed ID: 31085923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels.
    Tawa M; Okamura T
    Vascul Pharmacol; 2022 Aug; 145():107023. PubMed ID: 35718342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content.
    Ghosh A; Stasch JP; Papapetropoulos A; Stuehr DJ
    J Biol Chem; 2014 May; 289(22):15259-71. PubMed ID: 24733395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation.
    Lin Y; Chen Y; Zhu N; Zhao S; Fan J; Liu E
    Biomed Pharmacother; 2016 Oct; 83():466-476. PubMed ID: 27427853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen sulfide donor, NaHS, stimulates ANP secretion via the K
    Yu L; Park BM; Ahn YJ; Lee GJ; Kim SH
    Peptides; 2019 Jan; 111():89-97. PubMed ID: 29684589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vasorelaxation elicited by endogenous and exogenous hydrogen sulfide in mouse mesenteric arteries.
    Hart JL
    Naunyn Schmiedebergs Arch Pharmacol; 2020 Apr; 393(4):551-564. PubMed ID: 31713651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteasomal degradation.
    Meurer S; Pioch S; Pabst T; Opitz N; Schmidt PM; Beckhaus T; Wagner K; Matt S; Gegenbauer K; Geschka S; Karas M; Stasch JP; Schmidt HH; Müller-Esterl W
    Circ Res; 2009 Jul; 105(1):33-41. PubMed ID: 19478201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
    Beuve A
    Antioxid Redox Signal; 2017 Jan; 26(3):137-149. PubMed ID: 26906466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vasorelaxant Effect of Novel Nitric Oxide-Hydrogen Sulfide Donor Chalcone in Isolated Rat Aorta: Involvement of cGMP Mediated sGC and Potassium Channel Activation.
    Sherikar A; Dhavale R; Bhatia M
    Curr Mol Pharmacol; 2020; 13(2):126-136. PubMed ID: 31654520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aging does not affect soluble guanylate cyclase redox state in mouse aortas.
    Shimosato T; Tawa M; Iwasaki H; Imamura T; Okamura T
    Physiol Rep; 2016 May; 4(10):. PubMed ID: 27233303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle.
    Toque HA; Mónica FZ; Morganti RP; De Nucci G; Antunes E
    Eur J Pharmacol; 2010 Oct; 645(1-3):158-64. PubMed ID: 20670622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential role of mitochondrial superoxide decreasing ferrochelatase and heme in coronary artery soluble guanylate cyclase depletion by angiotensin II.
    Patel D; Alhawaj R; Kelly MR; Accarino JJ; Lakhkar A; Gupte SA; Sun D; Wolin MS
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1439-47. PubMed ID: 27037373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide.
    Fernhoff NB; Derbyshire ER; Underbakke ES; Marletta MA
    J Biol Chem; 2012 Dec; 287(51):43053-62. PubMed ID: 23093402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
    Montfort WR; Wales JA; Weichsel A
    Antioxid Redox Signal; 2017 Jan; 26(3):107-121. PubMed ID: 26979942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease.
    Boerrigter G; Burnett JC
    Cardiovasc Drug Rev; 2007; 25(1):30-45. PubMed ID: 17445086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Irreversible Activation and Stabilization of Soluble Guanylate Cyclase by the Protoporphyrin IX Mimetic Cinaciguat.
    Kollau A; Opelt M; Wölkart G; Gorren ACF; Russwurm M; Koesling D; Mayer B; Schrammel A
    Mol Pharmacol; 2018 Feb; 93(2):73-78. PubMed ID: 29138269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation.
    Sayed N; Baskaran P; Ma X; van den Akker F; Beuve A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12312-7. PubMed ID: 17636120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.