BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

729 related articles for article (PubMed ID: 27378756)

  • 1. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation.
    Penela P
    Prog Mol Biol Transl Sci; 2016; 141():85-140. PubMed ID: 27378756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor.
    Zheng H; Worrall C; Shen H; Issad T; Seregard S; Girnita A; Girnita L
    Proc Natl Acad Sci U S A; 2012 May; 109(18):7055-60. PubMed ID: 22509025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs).
    Li L; Homan KT; Vishnivetskiy SA; Manglik A; Tesmer JJ; Gurevich VV; Gurevich EV
    J Biol Chem; 2015 Apr; 290(17):10775-90. PubMed ID: 25770216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization.
    Gardner J; Eiger DS; Hicks C; Choi I; Pham U; Chundi A; Namjoshi O; Rajagopal S
    Sci Signal; 2024 Feb; 17(823):eadd9139. PubMed ID: 38349966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple functions of G protein-coupled receptor kinases.
    Watari K; Nakaya M; Kurose H
    J Mol Signal; 2014 Mar; 9(1):1. PubMed ID: 24597858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antidepressants, beta-arrestins and GRKs: from regulation of signal desensitization to intracellular multifunctional adaptor functions.
    Golan M; Schreiber G; Avissar S
    Curr Pharm Des; 2009; 15(14):1699-708. PubMed ID: 19442183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple scaffolding functions of {beta}-arrestins in the degradation of G protein-coupled receptor kinase 2.
    Nogués L; Salcedo A; Mayor F; Penela P
    J Biol Chem; 2011 Jan; 286(2):1165-73. PubMed ID: 21081496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double life: How GRK2 and β-arrestin signaling participate in diseases.
    Zhai R; Snyder J; Montgomery S; Sato PY
    Cell Signal; 2022 Jun; 94():110333. PubMed ID: 35430346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation.
    Drube J; Haider RS; Matthees ESF; Reichel M; Zeiner J; Fritzwanker S; Ziegler C; Barz S; Klement L; Filor J; Weitzel V; Kliewer A; Miess-Tanneberg E; Kostenis E; Schulz S; Hoffmann C
    Nat Commun; 2022 Jan; 13(1):540. PubMed ID: 35087057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of G Protein-Coupled Receptors by Ubiquitination.
    Skieterska K; Rondou P; Van Craenenbroeck K
    Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28448471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling.
    Ferguson SS
    Pharmacol Rev; 2001 Mar; 53(1):1-24. PubMed ID: 11171937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPCR desensitization: Acute and prolonged phases.
    Rajagopal S; Shenoy SK
    Cell Signal; 2018 Jan; 41():9-16. PubMed ID: 28137506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling.
    Ribas C; Penela P; Murga C; Salcedo A; García-Hoz C; Jurado-Pueyo M; Aymerich I; Mayor F
    Biochim Biophys Acta; 2007 Apr; 1768(4):913-22. PubMed ID: 17084806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GRKs as Modulators of Neurotransmitter Receptors.
    Gurevich EV; Gurevich VV
    Cells; 2020 Dec; 10(1):. PubMed ID: 33396400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoluciferase-based complementation assay for systematic profiling of GPCR-GRK interactions.
    Palmer CB; D'Uonnolo G; Luís R; Meyrath M; Uchański T; Chevigné A; Szpakowska M
    Methods Cell Biol; 2022; 169():309-321. PubMed ID: 35623709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation barcoding as a mechanism of directing GPCR signaling.
    Liggett SB
    Sci Signal; 2011 Aug; 4(185):pe36. PubMed ID: 21868354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias.
    Chen Q; Tesmer JJG
    J Biol Chem; 2022 Sep; 298(9):102279. PubMed ID: 35863432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases.
    Penela P; Ribas C; Mayor F
    Cell Signal; 2003 Nov; 15(11):973-81. PubMed ID: 14499340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.
    Bychkov E; Zurkovsky L; Garret MB; Ahmed MR; Gurevich EV
    PLoS One; 2012; 7(11):e48912. PubMed ID: 23139825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin.
    Nobles KN; Xiao K; Ahn S; Shukla AK; Lam CM; Rajagopal S; Strachan RT; Huang TY; Bressler EA; Hara MR; Shenoy SK; Gygi SP; Lefkowitz RJ
    Sci Signal; 2011 Aug; 4(185):ra51. PubMed ID: 21868357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.