These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 27378844)

  • 1. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.
    Zbrzeski A; Bornat Y; Hillen B; Siu R; Abbas J; Jung R; Renaud S
    Front Neurosci; 2016; 10():275. PubMed ID: 27378844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of an FPGA-Based Fuzzy Feedback Controller for Closed-Loop FES in Knee Joint Model.
    Noorsal E; Arof S; Yahaya SZ; Hussain Z; Kho D; Mohd Ali Y
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Digital Hardware Realization for Spiking Model of Cutaneous Mechanoreceptor.
    Salimi-Nezhad N; Amiri M; Falotico E; Laschi C
    Front Neurosci; 2018; 12():322. PubMed ID: 29937707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-Scale Bio-Inspired FPGA Models for Path Planning.
    Wang K; Wang J; Hao X; Deng B; Zhang Z; Yi G
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):51-62. PubMed ID: 37549075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-Inspired Approaches to Safety and Security in IoT-Enabled Cyber-Physical Systems.
    Johnson AP; Al-Aqrabi H; Hill R
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approach.
    Pearson MJ; Pipe AG; Mitchinson B; Gurney K; Melhuish C; Gilhespy I; Nibouche M
    IEEE Trans Neural Netw; 2007 Sep; 18(5):1472-87. PubMed ID: 18220195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-aware bio-inspired spiking reinforcement learning system architecture for real-time autonomous edge applications.
    Okonkwo JI; Abdelfattah MS; Mirtaheri P; Muhtaroglu A
    Front Neurosci; 2024; 18():1431222. PubMed ID: 39376537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization.
    Khoyratee F; Grassia F; Saïghi S; Levi T
    Front Neurosci; 2019; 13():377. PubMed ID: 31068781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ED-BioRob: A Neuromorphic Robotic Arm With FPGA-Based Infrastructure for Bio-Inspired Spiking Motor Controllers.
    Linares-Barranco A; Perez-Peña F; Jimenez-Fernandez A; Chicca E
    Front Neurorobot; 2020; 14():590163. PubMed ID: 33328951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of FPGA-Based SHE and SPWM Digital Switching Controllers for 21-Level Cascaded H-Bridge Multilevel Inverter Model.
    Noorsal E; Rongi A; Ibrahim IR; Darus R; Kho D; Setumin S
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory perception architecture with spiking neural network and implementation on FPGA.
    Deng B; Fan Y; Wang J; Yang S
    Neural Netw; 2023 Aug; 165():31-42. PubMed ID: 37276809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.
    Jimenez-Fernandez A; Jimenez-Moreno G; Linares-Barranco A; Dominguez-Morales MJ; Paz-Vicente R; Civit-Balcells A
    Sensors (Basel); 2012; 12(4):3831-3856. PubMed ID: 22666004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoring Ventilatory Control Using an Adaptive Bioelectronic System.
    Siu R; Abbas JJ; Hillen BK; Gomes J; Coxe S; Castelli J; Renaud S; Jung R
    J Neurotrauma; 2019 Dec; 36(24):3363-3377. PubMed ID: 31146654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.
    Wang CF; Yang SH; Lin SH; Chen PC; Lo YC; Pan HC; Lai HY; Liao LD; Lin HC; Chen HY; Huang WC; Huang WJ; Chen YY
    Brain Stimul; 2017; 10(3):672-683. PubMed ID: 28298263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.
    Pani D; Meloni P; Tuveri G; Palumbo F; Massobrio P; Raffo L
    Front Neurosci; 2017; 11():90. PubMed ID: 28293163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 128-Channel FPGA-Based Real-Time Spike-Sorting Bidirectional Closed-Loop Neural Interface System.
    Park J; Kim G; Jung SD
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2227-2238. PubMed ID: 28459692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact Hardware Synthesis of Stochastic Spiking Neural Networks.
    Galán-Prado F; Morán A; Font J; Roca M; Rosselló JL
    Int J Neural Syst; 2019 Oct; 29(8):1950004. PubMed ID: 30880526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of closed-loop modelling framework for adaptive respiratory pacemakers.
    Ai W; Suresh V; Roop PS
    Comput Biol Med; 2022 Feb; 141():105136. PubMed ID: 34929465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scan Time Reduction of PLCs by Dedicated Parallel-Execution Multiple PID Controllers Using an FPGA.
    Dhanabalan G; Tamil Selvi S; Mahdal M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.